Что называется средним арифметическим ряда чисел
Что называется средним арифметическим ряда чисел
Калькулятор вычислит среднее арифметическое чисел, а также размах ряда чисел, моду ряда чисел, медиану ряда. Для вычисления укажите количество чисел, добавьте числа и нажмите рассчитать.
Среднее арифметическое, размах, мода и медиана
Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.
Для ряда a1,a1. an среднее арифметическое вычисляется по формуле:
Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Ряд чисел может иметь более одной моды, а может не иметь моды совсем.
Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.
В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.
Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.
Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.
Примеры
Рассмотрим примеры нахождения среднего арифметического чисел, а также размаха, медианы и моды ряда.
Что называется средним арифметическим ряда чисел
Среднее арифметическое ряда чисел – это сумма данных чисел, поделенная на количество слагаемых.
Среднее арифметическое называют средним значением числового ряда.
Пример : Найдем среднее арифметическое чисел 2, 6, 9, 15.
Решение. У нас четыре числа. Значит, надо их сумму разделить на 4. Это и будет среднее арифметическое данных чисел:
(2 + 6 + 9 + 15) : 4 = 8.
Среднее геометрическое ряда чисел – это корень n-й степени из произведения этих чисел.
Пример : Найдем среднее геометрическое чисел 2, 4, 8.
Решение. У нас три числа. Значит, надо найти корень третьей степени из их произведения. Это и будет среднее геометрическое данных чисел:
3 √ 2 · 4 · 8 = 3 √64 = 4
Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел.
Пример : Найти размах чисел 2, 5, 8, 12, 33.
Решение : Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31:
Мода ряда чисел – это число, которое встречается в данном ряду чаще других.
Пример : Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8.
Решение : Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.
Медиана.
В упорядоченном ряде чисел:
Медиана нечетного количества чисел – это число, записанное посередине.
Пример : В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине.
Медиана четного количества чисел – это среднее арифметическое двух чисел, находящихся посередине.
Пример : Найти медиану чисел 4, 5, 7, 11, 13, 19.
Решение : Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел:
Число 9 и является медианой данного ряда чисел.
В неупорядоченном ряде чисел:
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.
Пример 1 : Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21.
Решение : Располагаем числа в порядке возрастания:
1, 3, 5, 17, 19, 21, 25.
Посередине оказывается число 17. Оно и является медианой данного ряда чисел.
Пример 2 : Добавим к нашему произвольному ряду чисел еще одно число, чтобы ряд стал четным, и найдем медиану:
5, 1, 3, 25, 19, 17, 21, 19.
Решение : Снова выстраиваем упорядоченный ряд:
1, 3, 5, 17, 19, 19, 21, 25.
Посередине оказались числа 17 и 19. Находим их среднее значение:
Число 18 и является медианой данного ряда чисел.
Среднее арифметическое чисел. Мода. Медиана. Размах ряда чисел
Среднее арифметическое нескольких величин – это отношение суммы величин к их количеству.
Правило. Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.
Например: найдем среднее арифметическое чисел 2; 6; 9; 15.
У нас четыре числа, значит надо их сумму разделить на четыре. Это и будет среднее арифметическое данных чисел: (2 + 6 + 9 + 15) : 4 = 8.
Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел.
Например: найдем размах чисел 2; 5; 8; 12; 33.
Наибольшее число здесь – 33, наименьшее – 2. Значит, размах составляет 31, т. е.: 33 – 2 = 31.
Мода ряда чисел – это число, которое встречается в данном ряду чаще других.
Например: найдем моду ряда чисел 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 8.
Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.
Медианой упорядоченного ряда чисел с нечетным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.
Например: в ряде чисел 2; 5; 9; 15; 21 медианой является число 9, находящееся посередине.
Найдем медиану в ряде чисел 4; 5; 7; 11; 13; 19.
Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел: (7 + 11) : 2 = 9. Число 9 является медианой данного ряда чисел.
В институте сдавали зачет по высшей математике. В группе было 10 человек, и они получили соответствующие оценки: 3; 5; 5; 4; 4; 4; 3; 2; 4; 5.
Какую оценку получали чаще всего? Каков средний балл сдавшей зачет группы?
Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.
Найдите медиану и размах ряда.
Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.
Найдите моду ряда и среднее арифметическое ряда.
Имеются следующие данные о месячной заработной плате пяти рабочих (тг): 126000; 138000; 132000; 141000; 150000.
Найдите среднюю заработную плату.
Магазин продает 8 видов булочек по следующим ценам: 31; 22; 24; 27; 30; 36; 19; 27.
Найдите разность среднего арифметического и медианы этого набора.
Найдите объем и медиану числового ряда.
Товарные запасы хлопчатобумажных тканей в магазине за первое полугодие составили (тыс. тг) на начало каждого месяца:
I | II | III | IV | V | VI | VII |
---|---|---|---|---|---|---|
37 | 34 | 35 | 32 | 36 | 33 | 38 |
Определите средний товарный запас хлопчатобумажных тканей за первое полугодие.
Провели несколько измерений случайной величины: 2,5; 2,2; 2; 2,4; 2,9; 1,8.
Найдите среднее арифметическое этого набора чисел.
Провели несколько измерений случайной величины: 6; 18; 17; 14; 4; 22.
Найдите медиану этого набора чисел.
Провели несколько измерений случайной величины:
800; 3200; 2000; 2600; 2900; 2000. Найдите моду этого набора чисел.
Магазин продает 8 видов хлеба по следующим ценам: 60, 75, 80, 85, 90, 100, 110, 120 тенге.
Найдите разность среднего арифметического и медианы этого набора.
Дан числовой ряд: 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 7,8.
Найдите среднее арифметическое, размах и моду.
3 простых формулы, чтобы посчитать среднее арифметическое
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Понятие среднего арифметического
Среднее арифметическое нескольких чисел — это сумма этих чисел, которую разделили на количество слагаемых. Вот так:
Например, найдем среднее арифметическое чисел 5, 6 и 7. Обозначим среднее значение латинской буквой «m» и посчитаем сумму этих чисел.
Разделим результат на количество чисел в задании, то есть на три.
Так получилась формула среднего арифметического:
Способы вычисления среднего арифметического
Стандартная формула. Чтобы найти среднее арифметическое, нужно сложить все числа и поделить эту сумму на их количество. Формула выглядит так:
Вычисление моды или наиболее часто встречающегося значения. Формула такая:
Вычисление медианы, то есть значения, которое делит упорядоченную выборку на две половины и находится между ними. Если такого значения нет, за медиану принимают среднее число между границами половин выборки. Формула выглядит так:
Применить эти знания можно в любой сфере жизни, где нужно обобщить и дать среднюю оценку: в магазине, на работе, в диалоге с другом или во время презентации перед инвесторами. Еще пригодятся, чтобы рассчитать среднюю скорость движения.
Средняя скорость движения — это весь пройденный путь, поделенный на время движения. Формула:
Так мы рассмотрели самые основные методы нахождения среднего значения. Теперь осталось попрактиковаться на примерах, чтобы быстро решать задачки на контрольной.
Примеры расчета среднего арифметического
Пример 1. Вычислить среднее арифметическое 33,3 и 55,5.
Чтобы найти среднее арифметическое двух чисел, надо сложить эти числа и результат разделить на 2: (33,3 + 55,5) : 2 = 88,8 : 2 = 44,4.
Пример 2. Посчитать среднее арифметическое 7,5 и 8 и 0,5.
Чтобы найти среднее арифметическое трех чисел, надо сложить эти числа и результат разделить на 3: (7,5 + 8 + 0,5) : 3 = 16 : 3 = 5,33.
Пример 3. Найти среднее арифметическое 202, 105, 67 и 9.
Чтобы найти среднее арифметическое четырех чисел, надо сложить эти числа и результат разделить на 4: (202 + 105 + 67 + 9) : 4 = 383 : 4 = 95,75.
Пример 4. Сколько в среднем тратит школьник денег в неделю, если в понедельник он потратил 80 рублей, во вторник 75 рублей, в среду и четверг по 100 рублей, в пятницу 50 рублей.
Чтобы найти сколько в среднем школьник потратил за пять дней, надо сложить эти суммы и результат разделить на 5: (80 + 75 + 100 + 100 + 50) : 5 = 405 : 5 = 81.
Ответ: школьник в неделю тратит в среднем 81 рубль.
В 5 классе можно искать среднее арифметическое с помощью онлайн-калькулятора. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:
9. Среднее арифметическое, размах и мода
При изучении учебной нагрузки учащихся выделили группу из 12 семиклассников. Их попросили отметить в определённый день время (в минутах), затраченное на выполнение домашнего задания по алгебре. Получили такие данные:
23, 18, 25, 20, 25, 25, 32, 37, 34, 26, 34, 25.
Имея этот ряд данных, можно определить, сколько минут в среднем затратили учащиеся на выполнение домашнего задания но алгебре. Для этого надо сложить указанные 12 чисел и сумму разделить на 12:
Число 27, полученное в результате, называют средним, арифметическим рассматриваемого ряда чисел.
Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.
Мы нашли, что на выполнение домашнего задания по алгебре учащиеся затратили в среднем но 27 мин. Проводя аналогичные наблюдения за этой группой учащихся, можно проследить, какова была средняя затрата времени на выполнение домашнего задания по алгебре в течение недели, сравнить среднюю затрату времени на выполнение в какой-либо день домашних заданий по алгебре и русскому языку и т. п. Заметим, что для серьёзных выводов о загруженности учащихся домашними заданиями необходимо выделить для наблюдений значительно большую группу, чем 12 человек.
Среднее арифметическое представляет собой то значение величины, которое получается, когда сумма всех наблюдаемых значений мысленно распределяется поровну между единицами наблюдения. Например, вычислив среднее арифметическое удоев молока, полученных за сутки на ферме от всех коров, мы найдём тот удой, который получили бы на ферме в эти сутки от одной коровы, если бы все коровы давали одинаковое количество молока, т. е. найдём среднесуточный удой молока на ферме от одной коровы. Аналогично находят среднюю урожайность пшеницы с 1 га в районе, среднюю выработку рабочего бригады за смену и т. п.
Заметим, что иногда вычисление среднего арифметического не даёт полезной информации. Например, нецелесообразно использовать в качестве обобщающего показателя среднюю урожайность зерновых и бахчевых культур в фермерском хозяйстве, средний размер обуви, которую носят учащиеся школы.
В рассмотренном примере мы нашли, что в среднем учащиеся затратили на выполнение домашнего задания по алгебре но 27 мин. Однако анализ приведённого ряда данных показывает, что время, затраченное некоторыми учащимися, существенно отличается от 27 мин, т. е. от среднего арифметического. Наибольший расход равен 37 мин, а наименьший — 18 мин. Разность между наибольшим и наименьшим расходом времени составляет 19 мин. В этом случае говорят, что размах ряда равен 19.
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Размах ряда находят, когда хотят определить, как велик разброс данных в ряду. Пусть, например, в течение суток отмечали каждый час температуру воздуха в городе. Для полученного ряда данных полезно не только вычислить среднее арифметическое, показывающее, какова среднесуточная температура, но и найти размах ряда, характеризующий колебание температуры воздуха в течение этих суток.
При анализе сведений о времени, затраченном семиклассниками на выполнение домашнего задания по алгебре, нас могут интересовать не только среднее арифметическое и размах полученного ряда данных, но и другие показатели. Интересно, например, знать, какой расход времени является типичным для выделенной группы учащихся, т. е. какое число встречается в ряду данных чаще всего. Нетрудно заметить, что таким числом является число 25. Говорят, что число 25 — мода рассматриваемого ряда.
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Ряд чисел может иметь более одной моды, а может не иметь моды совсем. Например, в ряду чисел
47, 46, 50, 52, 47, 52, 49, 45, 43, 53, 53, 47, 52
две моды — это числа 47 и 52, так как каждое из них встречается в ряду но три раза, а остальные числа — менее трёх раз.
69, 68, 66, 70, 67, 62, 71, 74, 63, 73, 72
Моду ряда данных обычно находят, когда хотят выявить некоторый типичный показатель. Например, если изучаются данные о размерах мужских сорочек, проданных в определённый день в универмаге, то удобно воспользоваться таким показателем, как мода, который характеризует размер, пользующийся наибольшим спросом. Среднее арифметическое в этом случае не даёт полезной информации. Мода является наиболее приемлемым показателем при выявлении расфасовки некоторого товара, которой отдают предпочтение покупатели, цены на товар данного вида, распространённой на рынке, и т. п.
Рассмотрим ещё пример. Пусть, проведя учёт деталей, изготовленных за смену рабочими одной бригады, получили такой ряд данных:
Найдём для него среднее арифметическое, размах и моду. Для этого удобно предварительно составить из полученных данных упо рядоченный ряд чисел, т. е. такой ряд, в котором каждое последующее число не меньше (или не больше) предыдущего. Получим
Вычислим среднее арифметическое:
Итак, средняя выработка рабочих за смену составляет примерно 37 деталей; различие в выработке рабочих не превосходит 4 деталей; типичной является выработка, равная 36 деталям.
Среднее арифметическое ряда чисел может не совпадать ни с одним из чисел ряда, а мода, если она существует, обязательно совпадает с двумя или более числами ряда. Кроме того, в отличие от среднего арифметического понятие «мода» относится не только к числовым данным. Например, проведя опрос учащихся, можно получить ряд данных, показывающих, каким видом спорта они предпочитают заниматься, какую из развлекательных телевизионных программ они считают наиболее интересной. Модой будут служить те ответы, которые встречаются чаще всего. Этим и объясняется само название «мода».
Такие характеристики, как среднее арифметическое, размах и мода, находят применение в статистике — науке, которая занимается получением, обработкой и анализом количественных данных о разнообразных массовых явлениях, происходящих в природе и обществе. Слово «статистика» происходит от латинского слова status, которое означает «состояние, положение вещей». Статистика изучает численность отдельных групп населения страны и её регионов, производство и потребление разнообразных видов продукции, перевозку грузов и пассажиров различными видами транспорта, природные ресурсы и т. п. Результаты статистических исследований широко используются для практических и научных выводов.
Упражнения
5,2, 5,4, 5,5, 5,4, 5,1, 5,1, 5,4, 5,5, 5,3.
Ильин: 4, 4, 5, 5, 4, 4, 4, 5, 5, 5, 4, 4, 5, 4, 4;
Семёнов: 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 5, 4;
Попов: 5, 5, «S, 5, 5, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4;
Романов: 3, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 3, 4, 4.
1, 2, 2, 3, 1, 0, 2, 1, 3, 2.
6, 5, 5, 6, 8, 3, 7, 6, 8, 5, 4, 9, 7, 7, 9, 8, 6, 6, 5, 6, 4, 3, 6, 5.