Что называется сплавом материаловедение

Сплавы металлов

Металлы используются человеком уже много тысячелетий. По именам металлов названы определяющие эпохи развития человечества: Бронзовый Век, Железный Век, Век Чугуна и т.д. Ни одно металлическое изделие из числа окружающих нас не состоит на 100% из железа, меди, золота или другого металла. В любом присутствуют сознательно введенные человеком добавки и попавшие помимо воли человека вредные примеси.

Абсолютно чистый металл можно получить только в космической лаборатории. Все остальные металлы в реальной жизни представляют собой сплавы — твердые соединения двух или более металлов (и неметаллов), полученные целенаправленно в процессе металлургического производства.

Что называется сплавом материаловедение

Классификация

Металлурги классифицируют сплавы металлов по нескольким критериям:

Что называется сплавом материаловедение

Виды сплавов по их основе

Металлы и сплавы на их основе имеют различные физико-химические характеристики.

Металл, имеющий наибольшую массовую долю, называют основой.

Свойства сплавов

Свойства, которыми обладают металлические сплавы, подразделяются на:

Что называется сплавом материаловедение

Для количественного выражения этих свойств вводят специальные физические величины и константы, такие, как предел упругости, модуль Гука, коэффициент вязкости и другие.

Основные виды сплавов

Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.

Что называется сплавом материаловедение

Что называется сплавом материаловедение

Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.

Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.

Что называется сплавом материаловедение

Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.

Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.

Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.

Цинковые сплавы

Сплавы на основе цинка отличаются низкими температурами плавления, стойкостью к коррозии и отличной обрабатываемостью. Они применяются в машиностроении, производстве вычислительной и бытовой техники, в издательском деле. Хорошие антифрикционные свойства позволяют использовать цинковые сплавы для вкладышей подшипников.

Титановые сплавы

Титан не самый доступный металл, он сложен в производстве и тяжело обрабатывается. Эти недостатки искупаются его уникальными свойствами титановых сплавов: высокой прочностью, малым удельным весом, стойкостью к высоким температурам и агрессивным средам. Эти материалы плохо поддаются механической обработке, но зато их свойства можно улучшить с помощью термической обработки.

Легирование алюминием и небольшими количествами других металлов позволяет повысить прочность и жаростойкость. Для улучшения износостойкости в материал добавляют азот или цементируют его.

Что называется сплавом материаловедение

Область применения титановых сплавов

Металлические сплавы на основе титана используются в следующих областях:

Алюминиевые сплавы

Если первая половина XX века была веком стали, то вторая по праву назвалась веком алюминия.

Трудно назвать отрасль человеческой жизнедеятельности, в которой бы не встречались изделия или детали из этого легкого металла.

Алюминиевые сплавы подразделяют на:

Основные преимущества соединений алюминия:

Основным недостатком сплавных материалов является низкая термостойкость. При достижении 175°С происходит резкое ухудшение механических свойств.

Еще одна сфера применения — производство вооружений. Вещества на основе алюминия не искрят при сильном трении и соударениях. Их применяют для выпуска облегченной брони для колесной и летающей военной техники.

Весьма широко применяются алюминиевые сплавные материалы в электротехнике и электронике. Высокая проводимость и очень низкие показатели намагничиваемости делают их идеальными для производства корпусов различных радиотехнических устройств и средств связи, компьютеров и смартфонов.

Что называется сплавом материаловедение

Слитки из алюминиевых сплавов

Присутствие даже небольшой доли железа существенно повышает прочность материала, но также снижает его коррозионную устойчивость и пластичность. Компромисс по содержанию железа находят в зависимости от требований к материалу. Отрицательное влияние железа скомпенсируют добавлением в состав лигатуры таких металлов, как кобальт, марганец или хром.

Конкурентом алюминиевым сплавам выступают материалы на основе магния, но ввиду более высокой цены их применяют лишь в наиболее ответственных изделиях.

Медные сплавы

Обычно под медными сплавами понимают различные марки латуни. При содержании цинка в 5-45% латунь считается красной (томпак), а при содержании в 20-35%- желтой.

Благодаря отличной обрабатываемости резанием, литьем и штамповкой латунь — идеальный материал для изготовления мелких деталей, требующих высокой точности. Шестеренки многих знаменитых швейцарских хронометров сделаны из латуни.

Малоизвестный сплав меди и кремния называют кремнистой бронзой. Он отличается высокой прочностью. По некоторым источникам, из кремнистой бронзы ковали свои мечи легендарные спартанцы. Если вместо кремния добавить фосфор, то получится отличный материал для производства мембран и листовых пружин.

Твердые сплавы

Это устойчивые к износу и обладающие высокой твердостью материалы на основе железа, к тому же сохраняющие свои свойства при высоких температурах до 1100 о С.

В качестве основной присадки применяются карбиды хрома, титана, вольфрама, вспомогательными являются никель, кобальт, рубидий, рутений или молибден.

Основными сферами применения являются:

Что называется сплавом материаловедение

Области применения твердых сплавов

Существуют и другие области применения твердосплавных веществ.

Источник

Сплав

Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из не удаленных примесей (природных, технологических и случайных).

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.

Содержание

Виды сплавов

По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые — прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.

По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы.

В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным — состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным).Твёрдый раствор является основой сплава (матричная фаза). Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений(в том числе карбиды, нитриды, интерметаллиды …) и кристаллиты простых веществ.

Свойства сплавов

Свойства металлов и сплавов полностью определяются их структурой (кристаллической структурой фаз и микроструктурой). Макроскопические свойства сплавов определяются микроструктурой и всегда отличаются от свойств их фаз, которые зависят только от кристаллической структуры. Макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения фаз в металлической матрице. Сплавы проявляют металлические свойства, например: электропроводность и теплопроводность, отражательную способность (металлический блеск) и пластичность. Важнейшей характеристикой сплавов является свариваемость.

Сплавы, используемые в промышленности

Сплавы различают по назначению: конструкционные, инструментальные и специальные.

Конструкционные со специальными свойствами (например, искробезопасность, антифрикционные свойства):

Для заливки подшипников:

Для измерительной и электронагревательной аппаратуры:

Для изготовления режущих инструментов:

См. также

Литература

Ссылки

Полезное

Смотреть что такое «Сплав» в других словарях:

сплав — сплав, а … Русский орфографический словарь

сплав — СПЛАВ, а, муж. Однородная смесь, образовавшаяся вследствие затвердения расплава двух или нескольких отдельных веществ. Металлические сплавы (из двух или нескольких металлов или из металла и неметалла). Неметаллические сплавы (гранит, базальт,… … Толковый словарь Ожегова

сплав — см. соединение Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2011. сплав сущ. • лесосплав … Словарь синонимов

сплав — 1. СПЛАВ, а; м. 1. Вещество, полученное при плавлении из двух или нескольких плавких твёрдых тел (преимущественно металлов). Лёгкие сплавы. Сверхтвёрдый с. Мельхиор с. меди с никелем. 2. Соединение различных элементов, частей и т.п. чего л. Его… … Энциклопедический словарь

СПЛАВ — 1. СПЛАВ1, сплава, муж. Смесь из двух или нескольких плавких твердых тел, преим. металлов. 2. СПЛАВ2, сплава, мн. нет, муж. Действие по гл. сплавить2 в 1 знач. сплавлять2. Сплав леса по реке. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

СПЛАВ — 1. СПЛАВ1, сплава, муж. Смесь из двух или нескольких плавких твердых тел, преим. металлов. 2. СПЛАВ2, сплава, мн. нет, муж. Действие по гл. сплавить2 в 1 знач. сплавлять2. Сплав леса по реке. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

СПЛАВ 1 — СПЛАВ 1, а, м. Однородная смесь, образовавшаяся вследствие затвердения расплава двух или нескольких отдельных веществ. Металлические сплавы (из двух или нескольких металлов или из металла и неметалла). Неметаллические сплавы (гранит, базальт,… … Толковый словарь Ожегова

СПЛАВ 2 — см. сплавить 2. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

сплав — 1 іменник чоловічого роду складна речовина сплав 2 іменник чоловічого роду сплавлення лісу … Орфографічний словник української мови

Сплав — I м. 1. Соединение двух или нескольких плавких тел. 2. перен. Соединение различных элементов, частей и т.п. чего либо. II м. действие по гл. сплавлять II, сплавить II Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Сплав — I м. 1. Соединение двух или нескольких плавких тел. 2. перен. Соединение различных элементов, частей и т.п. чего либо. II м. действие по гл. сплавлять II, сплавить II Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Источник

Лекция №2. Теория сплавов

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Лекция №2. Теория сплавов

Рассмотрим ряд основополагающих определений и понятий.

Сплав – вещество, полученное сплавлением двух и более элементов (компонентов). Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называются металлическим сплавом.

По количеству компонентов сплавы соответственно называются двойными, тройными и многокомпонентными.

Структурные составляющие – обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.

Система – совокупность тел (твердых, жидких) в определенном объеме при определенных внешних условиях, взятых для исследования.

Компонент – простейшая часть (вещество) из образующих систему. В металлических сплавах компонентами являются элементы (металлы и неметаллы) и химические соединения (не диссоциирующие при нагревании)

Фаза – однородная часть системы, имеющая физическую границу раздела (поверхность), при переходе через которую химические состав или структура изменяются скачком.

2.1. Строение сплавов

Чистые металлы находят довольно ограниченное применение. Основными конструкционными материалами являются металлические сплавы. В основном сплавы получают путём кристаллизации жидкого расплава нескольких металлов, но могут быть и другие пути – спеканием, диффузией, осаждением и другие.

Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях и образуют однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла.

При образовании сплавов в процессе их затвердевания возможно различное взаимодействие компонентов. По характеру взаимодействия компонентов все сплавы подразделяются на три основных типа: механические смеси, твердые растворы и химические соединения.

Механическая смесь двух компонентов образуется, если они не способны к взаимодействию или взаимному растворению.

Каждый компонент при этом кристаллизуется в свою кристаллическую решетку. Структура механических смесей неоднородная, состоящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения компонентов.

Если механическая смесь образуется при первичной кристаллизации, она называется эвтектической, если в результате вторичной – эвтектоидной.

Твердые растворы образуются, когда один компонент растворяется в другом. Тогда в твердом состоянии атомы одного компонента входят в кристаллическую решетку другого. Если атомы кристаллической решетки одного компонента А частичного замещаются атомами другого В, образуются твердые растворы замещения, рис. 2.1а. Твердые растворы замещения образуются элементами, атомные радиусы которых отличаются не более чем на 8 – 15%, но и в этом случае кристаллическая решетка растворителя искажается, не утрачивая своего строения.

Если атомы растворимого компонента В внедряются в пустоты решетки растворителя А, то образуются твердые растворы внедрения (рис. 2.1б). Следовательно, атомы растворимого элемента должны быть соизмеримы с пустотами кристаллической решетки растворителя. Концентрация твердых растворов внедрения не может быть высокой – не более 1…2%.

Что называется сплавом материаловедение

Рис. 2.1. Схемы твердых растворов замещения (а) внедрения (б)

Твердый раствор имеет однородную структуру и одну кристаллическую решетку. Обозначают твердые растворы буквами греческого алфавита α, β, γ, δ и т.д.

Свойства химического соединения резко отличаются от свойств образующих его компонентов при этом они, как правило, обладают большой твердостью и хрупкостью (карбиды, нитриды и др.). Химическое соединение имеет однородную структуру, состоящую из одинаковых по составу и свойствам зерен, и может играть роль компонента в сплавах.

2.2. Диаграммы состояния двойных сплавов

Диаграмма состояния – графическое изображение состояния сплава изучаемой системы в зависимости от концентрации в нем компонентов и температуры. Диаграмма состояния показывает равновесные, устойчивые состояния сплава, т.е. такие, которые при данных условиях обладают минимальной свободной энергией.

Построение диаграмм состояния осуществляют различными экспериментальными методами. Наиболее часто используется метод термического анализа. Он заключается в том, что составляют несколько сплавов с различной концентрацией компонентов, расплавляют их и медленно охлаждают, фиксируя время охлаждения и температуру.

По полученным данным строят серию кривых охлаждения в координатах: время (τ, сек) – температура (t,°С), на которых наблюдают точки перегибов и температурные остановки – критические точки фазовых переходов (рис. 2.2). Что называется сплавом материаловедение

Рис. 2.2. Кривая охлаждения сплава

Вид диаграммы зависит от того, как взаимодействуют между собой компоненты.

Диаграмма состояния сплавов,

образующих механические смеси чистых компонентов (1 тип)

Рассмотрим кривые охлаждения нескольких сплавов системы А – В, имеющих различный состав (рис. 2.3). Кристаллизация чистого компонента А (100%) начинается в т.1 и заканчивается в т.1*, протекая при постоянной температуре. Выше этой температуры компонент А находится в жидком состоянии, ниже – в твердом. Аналогично происходит кристаллизация чистого компонента В.

Кривая охлаждения сплава (60% А + 40%В) аналогична кривым охлаждения чистых компонентов. На ней имеется также только одна температурная остановка 2-2*, т.е. кристаллизация происходит при постоянной температуре. Особенность кристаллизации этого сплава заключается в том, что происходит одновременная кристаллизация обоих компонентов – появляются и растут кристаллы, образуя мелкокристаллическую механическую смесь обоих компонентов (А+В).

Что называется сплавом материаловедение

Рис. 2.3. Диаграмма состояния сплавов, образующих механические смеси

чистых компонентов, состав сплавов: 1 – 100%А, 2 – 80%А+20%В,

3 – 60%А+40%В, 4 – 20%А+80%В, 5 – 100%В

Сказанное в равной степени относится и к сплаву (20%А + 80%В), отличие состоит лишь в том, что на участке 1–2 происходит образование и рост зерен компонента В. Для этих сплавов характерной особенностью является то, что кристаллизация на участке 1–2 происходит в интервале температур.

Диаграмма состояния сплавов с неограниченной растворимостью

компонентов в твердом состоянии (2 тип)

Для таких сплавов возможно образование двух фаз: жидкого сплава Ж и твердого раствора α. На диаграмме две линии, верхняя – ликвидус и нижняя – солидус (рис. 2.4).

Что называется сплавом материаловедение

Рис. 2.4. Диаграмма состояния сплавов с неограниченной растворимостью

Диаграмма состояния сплавов с ограниченной растворимостью

в твердом состоянии (3 тип)

В таких сплавах могут существовать три фазы: жидкий раствор (Ж), твердый раствор компонента В в компоненте А – (α) и твердый раствор компонента А в компоненте В – (β). Эта диаграмма содержит в себе элементы двух предыдущих (рис. 2.5).

Что называется сплавом материаловедение

Рис. 2.5. Диаграмма состояния сплавов с ограниченной растворимостью

компонентов в твердом состоянии

Линия АСВ – линия ликвидус, линия АЕСFВ – линия солидус. Линия ЕСF – линия эвтектики. Таким образом, здесь также образуется эвтектика, доэвтектические и заэвтектические сплавы. Линия РЕ – линия ограниченной растворимости компонента В в компоненте А, по этой линии происходит выделение вторичных кристаллов β II (вследствие уменьшения растворимости компонента В в компоненте А с понижением температуры). Процесс выделения вторичных кристаллов называется вторичной кристаллизацией.

Диаграмма состояния сплавов, образующих устойчивые химические соединения (4 тип)

Что называется сплавом материаловедение

Рис. 2.6. Диаграмма 4 типа

Такая диаграмма характеризуется наличием вертикальной линии, соответствующей соотношению компонентов в химическом соединении А n В m (рис. 2.6). Эта линия делит диаграмму на две части, которые можно рассматривать как самостоятельные диаграммы сплавов, образуемых устойчивым химическим соединением и одним из компонентов. На рисунке представлена диаграмма для случая, когда каждый из компонентов образует с химическим соединением механическую смесь.

2.3. Пластическая деформация, наклеп и рекристаллизация

Волокнистое строение и наклеп можно устранить при нагреве металла. Частичное снятие наклепа происходит уже при небольшом нагреве. Снимается искажение кристаллической решетки. Этот процесс называется возвратом (рис. 2.7). Но волокнистая структура при этом сохраняется.

При нагреве до более высоких температур в металле происходит образование новых равноосных зерен. Такой процесс называют рекристаллизацией. Наклеп при этом снимается полностью. Различают рекристаллизацию первичную и собирательную.

Рекристаллизация первичная (участок 1–2 на рис. 2.7) заключается в образовании зародышей и росте новых равновесных зерен с неискаженной кристаллической решеткой.

Собирательная рекристаллизация – вторая стадия процесса, заключающаяся в росте образовавшихся новых зерен. Рост зерен обусловлен стремлением системы к более равновесному состоянию за счет уменьшения внутренней поверхности зерен. Особенность собирательной рекристаллизации – вторичная рекристаллизация – рост отдельных зерен за счет других. Основными факторами, определяющими величину зерен, являются температура, продолжительность выдержки при нагреве и степень деформации.

Что называется сплавом материаловедение

Рис. 2.7. Схема изменения структуры и свойств наклепанного металла

при возврате (отдыхе) и рекристаллизации

где а – коэффициент, зависящий от структуры и состава металла. Для особо чистых металлов а = 0,2, для металлов технической чистоты а = 0,3 – 0,4, для сплавов а = 0,5 – 0,6.

На практике наклеп устраняют рекристаллизационным отжигом.

Если деформирование происходит при температуре выше температуры рекристаллизации, то наклепа не происходит. Такая деформация называется горячей. Деформация, которая происходит при температуре ниже температуры рекристаллизации, называется холодной.

Источник

Учебные материалы

Чистые металлы находят довольно ограниченное применение в качестве конструкционных материалов. Основными конструкционными материалами являются сплавы. Они обладают более ценными комплексами механических, физических и технологических свойств, чем чистые металлы.

Сплавом называют вещество, полученное сплавлением двух или более элементов (компонентов).

Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называют металлическим сплавом. Металлические сплавы можно также получать методами порошковой металлургии (спеканием), диффузией, осаждением нескольких элементов на катоде при электролизе водных растворов.

К основным понятиям в теории сплавов относятся система, компонент, фаза.

Система — группа тел, выделяемых для наблюдений и изучения. В металловедении системами являются металлы и металлические сплавы.

Компонентами называют вещества, образующие систему, взятые в наименьшем количестве. В металлических сплавах компонентами могут быть элементы (металлы и неметаллы) и химические соединения (не диссоциирующие при нагревании). Чистые компоненты обозначаются прописными буквами латинского алфавита А, В, С, Д.

Фазой называется однородная часть системы, отделенная от другой части системы поверхностью раздела, при переходе через которую состав, строение и свойства изменяются скачком.

Сплавы могут быть однофазными, двухфазными, трехфазными.

В зависимости от физико-химического взаимодействия компонентов могут образовываться следующие фазы: жидкие растворы, твердые растворы и химические соединения.

Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях. В результате образуется однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла.

Твердые растворы — это фазы, в которых один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры.

Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.

В зависимости от характера распределения атомов элемента различают твердые растворы внедрения, замещения и вычитания.

В твердых растворах внедрения атомы растворимого элемента распределяются в кристаллической решетке металла-растворителя, занимая места между его атомами. Разместиться в таких пустотах могут только атомы с очень малыми размерами. Наименьшие размеры атомов имеют некоторые металлоиды и водород, азот, углерод, бор, которые и образуют с металлами твердые растворы внедрения.

В твердых растворах замещения атомы растворимого элемента занимают места атомов основного металла. Посторонние атомы могут замещать атомы растворителя в любых местах, поэтому такие растворы называют неупорядоченными твердыми растворами.

Твердые растворы замещения могут быть ограниченной и неограниченной растворимости. Так, в алюминии может растворяться до 5,5 % меди, в меди — до 39% цинка. Неограниченной растворимостью обладают, например, компоненты систем: Сu-Ni, Cu-Au, Ag-Au, Cu-Pt, Fe-Cr, Fe-Ni. Для образования твердых растворов неограниченной растворимости должны выполняться следующие условия: компоненты должны иметь одинаковые по типу кристаллические решетки; различие в атомных размерах компонентов должно быть незначительным и не превышать 8…15 % (например, Аg и Cu — DR = 0,2%, Сu и Ni — DR = 2,7 %); компоненты должны принадлежать к одной и той же группе периодичной системы или смежной родственной группе и иметь в атомах близкое строение валентной оболочки электронов.

В некоторых сплавах с понижением температуры в твердых растворах замещения может произойти процесс перераспределения атомов, в результате которого атомы растворенного элемента займут строго определенные места в решетке растворителя. Такие твердые растворы называют упорядоченными, а их структуру — сверхструктурой. Температуру перехода в упорядоченное состояние называют ”точкой Курнакова”. Полностью упорядоченные растворы образуются, когда отношение компонентов в сплаве равно целому числу: 1:1, 1:2, 1:3 и т.д. В этом случае сплаву можно приписать формулу химического соединения, например, CuAu, Cu3Au. Их можно рассматривать как промежуточные фазы между твердыми растворами и химическими соединениями. В отличие от химического соединения сохраняется решетка растворителя, и при нагреве выше точки Курнакова степень упорядочения постепенно уменьшается и они становятся неупорядоченными. Упорядоченные твердые растворы характеризуются большей твердостью, прочностью, меньшей пластичностью и электросопротивлением.

Твердые растворы вычитания образуются на основе некоторых химических соединений, когда к этому химическому соединению добавляется один из входящих в его формулу элементов. Атомы этого элемента занимают нормальные положения в решетке соединения, а места, где должны были бы находиться атомы второго компонента, оказываются незаполненными, пустыми. Такие твердые растворы образуются, например, при сплавлении химического соединения NiAl с Аl, карбида титана ТiС с Тi, когда FeО растворяет кислород.

Твердые растворы принято обозначать строчными буквами греческого алфавита a, b, g, d.

Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Они обычно образуются элементами, имеющими большое различие в электронном строении атомов и кристаллических решетках.

Характерные особенности химических соединений:

Образование химического соединения сопровождается значительным тепловым эффектом.

Соединения одних металлов с другими называются интерметаллидами. Связь между атомами в интерметаллидах чаще металлическая. Примером являются соединения Мg2Sn, Мg2Pb.

При образовании химического соединения металла с неметаллом возникает ионная связь, например, в соединении NaCl.

Переходные металлы (Fe, Mn, Cr, Mo, W, V и др.) образуют с углеродом карбиды, с азотом нитриды, с бором бориды, с водородом гидриды (железо гидридов не образует) Они имеют общность строения и свойств и называются фазами внедрения. Они имеют формулы: МХ (WC, VC, TiC, NbC, TiN, VN, и др.); М2Х (W2C, Mo2C, Fe2N и др.); М4 Х (Fe4N, Mn4N и др.).

Кристаллическая структура фаз внедрения определяется соотношением атомных радиусов неметалла (Rx) и металла (Rм). Если Rx/Rм
Дальше >

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *