Что называется спектром поглощения
Спектр поглощения
Спектр поглощения — зависимость показателя поглощения вещества от длины волны (или частоты, волнового числа, энергии кванта и т. п.) излучения. Он связан с энергетическими переходами в веществе. Для различных веществ спектры поглощения различны.
Исторически первые наблюдения линейчатых оптических спектров поглощения в спектре Солнца проделал в 1802 году Волластон, но не придал открытию значения, поэтому эти линии были названы «фраунгоферовыми» в честь другого учёного Фраунгофера, который детально изучил их в 1814—1815 гг.
Измерения спектров поглощения могут проводиться как с источником белого света так и с источниками монохроматического излучения.
Для почти свободных атомов и молекул в разрежённых газах оптический спектр поглощения состоит из отдельных спектральных линий и называется линейчатым.
Разным веществам соответствуют разные спектры поглощения, что позволяет использовать спектроскопические методы для определения состава вещества. Для твёрдых веществ спектры поглощения непрерывны, но встречаются и отдельные линии.
Полупроводники
В полупроводниках можно наблюдать следующие типы поглощения света, которые играют наиболее важную роль в исследовании свойств твёрдого тела (его зонной структуры и плотности состояний) и квазичастиц:
См. также
Полезное
Смотреть что такое «Спектр поглощения» в других словарях:
СПЕКТР ПОГЛОЩЕНИЯ — характеристика светового потока после прохождения его через слой исследуемого вещества, выражаемая, как и в случае спектра испускания (см. Анализ спектральный эмиссионный), в виде распределения интенсивности поглощения света в зависимости от… … Геологическая энциклопедия
спектр поглощения — absorbcijos spektras statusas T sritis chemija apibrėžtis Per tiriamą medžiagą praėjusios spinduliuotės sugėrimo intensyvumo priklausomybė (ppr. grafinė) nuo bangos ilgio ar dažnio. atitikmenys: angl. absorption spectrum; darkline rus. спектр… … Chemijos terminų aiškinamasis žodynas
спектр поглощения — sugerties spektras statusas T sritis fizika atitikmenys: angl. absorption spectrum; darkline spectrum vok. Absorptionsspektrum, n rus. спектр поглощения, m pranc. spectre d’absorption, m … Fizikos terminų žodynas
СПЕКТР, ПОГЛОЩЕНИЯ — В оптике – пропорция падающего света, поглощенного телом как функция длины волны; см. кривая спектрального поглощения … Толковый словарь по психологии
инфракрасный спектр поглощения — infraraudonosios spinduliuotės sugerties spektras statusas T sritis fizika atitikmenys: angl. infra red absorption spectrum; IR absorption spectrum vok. Infrarot Absorptionsspektrum, n; IR Absorptionsspektrum, n rus. инфракрасный спектр… … Fizikos terminų žodynas
вращательный спектр поглощения — sukimosi sugerties spektras statusas T sritis fizika atitikmenys: angl. rotational absorption spectrum vok. Rotationsabsorptionsspektrum, n rus. вращательный спектр поглощения, m; ротационный спектр поглощения, m pranc. spectre d’absorption de… … Fizikos terminų žodynas
ротационный спектр поглощения — sukimosi sugerties spektras statusas T sritis fizika atitikmenys: angl. rotational absorption spectrum vok. Rotationsabsorptionsspektrum, n rus. вращательный спектр поглощения, m; ротационный спектр поглощения, m pranc. spectre d’absorption de… … Fizikos terminų žodynas
СПЕКТР — СПЕКТР, расположение ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, упорядоченное по длине ВОЛНЫ или по ЧАСТОТЕ. Спектр видимого света является последовательностью цветов (красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового). Каждый цвет… … Научно-технический энциклопедический словарь
СПЕКТР — (1) совокупность семи цветовых полос (спектральные цвета), чередующихся в определённом порядке, которые получаются при прохождении светового луча через преломляющую среду (напр. радуга, образующаяся вследствие преломления солнечных лучей в каплях … Большая политехническая энциклопедия
Поглощения коэффициент — Коэффициент поглощения доля поглощения объектом, взаимодействующего с ним другого объекта. Взаимодействующим объектом может быть электромагнитное излучение определённой частоты, энергия звуковых волн, ионизирующее или проникающее излучение, какое … Википедия
Представление спектров поглощения
Общие сведения о спектрах поглощения
Молекулярные абсорбционные спектры. методы молекулярного абсорбционного анализа.
Спектры поглощения (СП), в отличие от спектров испускания, обусловлены вынужденными электронными переходами, которые происходят под воздействием излучения от внешнего источника.
Для получения СП вещество помещают в поле электромагнитного излучения. Если энергия кванта с частотой νi не меньше, чем энергия перехода:
то переход может осуществиться, в результате вещество будет поглощать свет с частотой νi.
Если энергия кванта с частотой νi меньше энергии перехода:
Совокупность полос образует спектр поглощения.
Спектр поглощения вещества – это графическое изображение распределения поглощаемой им энергии по длинам волн.
По оси ординат можно откладывать:
§ оптическую плотность (А) или её логарифм (lgA);
§ молярный коэффициент поглощения (ε) или его логарифм (lgε).
По оси абсцисс можно откладывать:
§ волновое число ().
Выбор системы координат обусловлен:
§ областью спектрального диапазона: (в УФ и vis областях спектры строят в системе координат А – λ (Рис.40 a), а в ИК области – в системе координат Т – ν) (Рис.40 b);
§ целью исследования например для проведения качественного анализа спектр строят в системе координат ε – λ, поскольку ε не зависит от концентрации вещества (Рис.40 c);
§ величиной поглощения и т. д.
Примерный вид спектров поглощения для указанных случаев приведен на рис. 40.
|
Рис. 40. Примерный вид спектров поглощения.
Линейчатые спектры
теория по физике 🧲 оптика
Если пропустить солнечный свет через стеклянную призму или дифракционную решётку, то на экране получится хорошо известный нам спектр. Спектр, который вы видите ниже, называется непрерывным спектром. Он представляет собой сплошную полосу, состоящую из разных цветов, плавно переходящих друг в друга.
Непрерывный (сплошной) спектр — разновидность спектра, в которой присутствуют все длины волн видимого диапазона (от красной границы до фиолетовой).
Излучения, обладающие непрерывным спектром:
Пример №1. Будет ли излучать свет в непрерывном спектре спираль работающей электроплиты?
В данном случае да, поскольку спирать — твердое тело, нагретое до высокой температуры.
Линейчатый спектр и его виды
Картина резко меняется, когда мы наблюдаем свечение, излучаемое разреженными газами. Спектр перестает быть непрерывным: в нём появляются разрывы, которые увеличиваются по мере разрежения газа. В предельном случае чрезвычайно разреженного атомарного газа спектр становится линейчатым.
Линейчатый спектр — спектр, который состоит из отдельных достаточно тонких линий.
Линейчатый спектр бывает двух видов:
Спектр испускания
Предположим, что газ состоит из атомов некоторого химического элемента и разрежен настолько, что атомы почти не взаимодействуют друг с другом. Раскладывая в спектр излучение такого газа (нагретого до очень высокой температуры), мы сможем наблюдать такую картину, как на картинке ниже.
Спектр испускания — линейчатый спектр, который состоит из тонких изолированных разноцветных линий, соответствующих тем длинам волн света, который излучается атомами.
Любой атомарный разреженный газ излучает свет с линейчатым спектром. Но наибольшую важность имеет то, что для любого химического элемента спектр испускания является уникальным. Поэтому по нему можно устанавливать, какой химический элемент находится перед нами. Он является своего рода идентификатором.
Поскольку газ разрежен и атомы мало взаимодействуют друг с другом, мы можем сделать следующий вывод:
Свет излучают атомы сами по себе. Следовательно, каждый атом характеризуется дискретным, строго определённым набором длин волн излучаемого света. У каждого химического элемента этот набор свой.
Спектр поглощения
Атомы излучают свет в процессе перехода из возбуждённого состояния в основное. Но вещество может не только излучать, но и поглощать свет. При поглощении света атом совершает обратный процесс — он переходит из основного состояния в возбуждённое.
Снова рассмотрим разреженный атомарный газ, но теперь в охлажденном состоянии (при довольно низкой температуре). Свечения газа в этом случае мы не увидим. В не нагретом состоянии газ не излучает свечение, так как атомов в возбуждённом состоянии оказывается для этого слишком мало.
Если сквозь охлажденный газ пропустить свет с непрерывным спектром, мы увидим следующую картину (см. рисунок ниже).
Спектр поглощения — темные линии на фоне непрерывного спектра, соответствующие тем длинам волн света, которые поглощаются атомами и излучаются впоследствии при сильном нагревании.
Объясним, откуда берутся темные линии. Под действием падающего света газовые атомы переходят в возбуждённое состояние. При этом оказывается, что для возбуждения атомов нужны не любые длины волн, а лишь некоторые, строго определённые для данного вида газа. Именно эти длины волн газ поглощает из падающего на него света.
Внимание! Газ поглощает те длины волн, которые излучает сам. Поэтому, цветные линии на спектре испускания соответствуют темным линиям на спектре поглощения. Если их сложить, можно получить непрерывный спектр.
На рисунке ниже сопоставлены спектры испускания и поглощения разреженных паров натрия.
Глядя на спектры испускания и поглощения, ученые XIX века пришли к выводу, что атом не является неделимой частицей и обладает некоторой внутренней структурой. Ведь что-то внутри атома должно обеспечивать процессы излучения и поглощения света.
Кроме того, уникальность атомных спектров говорит о том, что этот механизм различен у атомов разных химических элементов. Поэтому атомы разных химических элементов должны отличаться по своему внутреннему устройству.
Спектральный анализ
Использование линейчатых спектров в качестве идентификаторов химических элементов лежит в основе спектрального анализа.
Спектральный анализ — метода исследования химического состава вещества по его спектру.
Идея спектрального анализа заключается в следующем. Спектр излучения исследуемого вещества сопоставляется с эталонными спектрами химических элементов. Затем делается вывод о присутствии или отсутствии различных химических элементов в исследуемом образце. При определённых условиях посредством спектрального анализа можно определить химический состав не только качественно, но и количественно.
В результате наблюдения различных спектров были открыты новые химические элементы. Первыми из таких элементов были цезий и рубидий. Названия эти элементы получили по цвету линий своего спектра. Так, в спектре цезия больше всего выражены две линии небесно-синего цвета, который на латинском языке звучит как caesius. Рубидий же даёт две отчетливые линии рубинового цвета.
В 1868 году в спектре солнечного света были обнаружены линии, не соответствующие ни одному из известных химических элементов. Этот элемент был назван гелием (от греческого гелиос — солнце). Впоследствии гелий был найден в атмосфере нашей планеты. Спектральный анализ излучения Солнца и других звезд показал, что все входящие в их состав входят элементы имеются и на Земле. Таким образом, оказалось, что все объекты Вселенной собраны из одного и того же набора элементов.
Пример №2. Какую картинку можно получить, если провести спектральный анализ вещества, состоящего из двух химических элементов?
Спектры испускания и спектры поглощения будут накладываться друг на друга. В итоге можно будет получить спектр испускания, в котором будут присутствовать все длины волн, соответствующие тем, что испускаются первым и вторым химическим элементом. В спектре поглощения эти же длины волн будут отсутствовать.
На рисунке приведены спектр поглощения неизвестного газа и спектры поглощения атомарных паров известных элементов. По виду спектров можно утверждать, что неизвестный газ содержит атомы
а) азота (N), магния (Mg) и другого неизвестного вещества
в) только магния (Mg)
г) только магния (Mg) и азота (N)
Алгоритм решения
Решение
Если спектр поглощения неизвестного газа содержит все линии, которые есть на спектре известного элемента, то этот газ содержит этот элемент.
Видно, что спектр поглощения неизвестного газа включает в себя все линии, которые есть в спектре поглощения магния. Следовательно, этот газ содержит магний.
Видно, что спектр поглощения неизвестного газа включает в себя все линии, которые есть в спектре поглощения азота. Следовательно, этот газ также содержит азот.
Но кроме линий, соответствующих азоту и магнию, на спектре поглощения газа наблюдаются другие линии. Следовательно, газ содержит как минимум еще один элемент.
pазбирался: Алиса Никитина | обсудить разбор | оценить
На рисунке приведены спектр поглощения разреженных атомарных паров неизвестного вещества (в середине) и спектры поглощения паров известных элементов (вверху и внизу). По анализу спектров можно утверждать, что неизвестное вещество содержит
а) только натрий (Na) и водород (Н)
б) только водород (Н) и гелий (Не)
в) водород (Н), гелий (Не) и натрий (Na)
г) натрий (Na), водород (H) и другие элементы, но не гелий (He)
Алгоритм решения
Решение
Если спектр поглощения неизвестного газа содержит все линии, которые есть на спектре известного элемента, то этот газ содержит данный элемент.
Видно, что спектр поглощения неизвестного вещества включает в себя все линии, которые есть в спектре поглощения водорода и натрия. Но линий, соответствующих спектру поглощения гелия, в нем нет. Следовательно, это вещество содержит водород, натрий, но не содержит гелий.
Кроме линий, соответствующих водороду и натрию, на спектре поглощения вещества наблюдаются другие линии. Следовательно, оно содержит как минимум еще один элемент.
pазбирался: Алиса Никитина | обсудить разбор | оценить
На рисунках А, Б и В приведены спектры излучения паров кальция Ca, стронция Sr и неизвестного образца.
Можно утверждать, что в неизвестном образце
а) не содержится стронция
б) не содержится кальция
в) содержатся кальций и ещё какие-то элементы
г) содержится только кальций
Алгоритм решения
Решение
Если спектр излучения неизвестного образца содержит все линии, которые есть на спектре излучения известного элемента, то этот образец содержит данный элемент.
Видно, что спектр излучения неизвестного образца включает в себя все линии, которые есть в спектре излучения стронция. Но линий, соответствующих спектру излучения кальция, в нем нет. Следовательно, этот образец не содержит кальций.
Кроме линий, соответствующих стронцию, на спектре излучения неизвестного образца наблюдаются другие линии. Следовательно, он содержит как минимум еще один элемент.
Из всех перечисленных утверждений верным является только одно — образец не содержит кальция.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Спектр поглощения( определение), графическая зависимость.
Спектр поглощения — зависимость показателя поглощения вещества от длины волны (или частоты, волнового числа, энергии кванта и т. п.) излучения. Он связан с энергетическими переходами в веществе. Для различных веществ спектры поглощения различны.
Исторически первые наблюдения линейчатых оптических спектров поглощения в спектре Солнца проделал в 1802 годуВолластон, но не придал открытию значения, поэтому эти линии были названы «фраунгоферовыми» в честь другого учёногоФраунгофера, который детально изучил их в 1814—1815 гг.
Измерения спектров поглощения могут проводиться как с источником белого света так и с источниками монохроматическогоизлучения.
Для почти свободных атомов и молекул в разрежённых газах оптический спектр поглощения состоит из отдельныхспектральных линий и называется линейчатым.
Разным веществам соответствуют разные спектры поглощения, что позволяет использовать спектроскопические методы для определения состава вещества. Для твёрдых веществ спектры поглощения непрерывны, но встречаются и отдельные линии.
Обычно спектр поглощения выражают в виде графической зависимости оптической плотности A или молярного коэффициента поглощения e от частоты n или длины волны l падающего света. Вместо A или e нередко откладывают их логарифмы.
Рис.1. Зависимость Ig A от l.
1 — раствор концентрации с в кювете толщиной l, см; 2 — раствор концентрации 1/4 с или в кювете толщиной l,см
Графическое изображение распределения поглощаемой энергии по длинам волн называется спектром поглощения. Способы представления спектра различны в зависимости от величин, откладываемых по осям координат (рис. 6.1.).
Количество поглощенной световой энергии выражают величинами Т, А, . Выбор той или иной величины определяется областью спектра, величиной поглощения, задачами исследования и т.п.
Основные характеристики спектра. Участок спектра, на котором наблюдается интенсивное поглощение излучения называют
Рис. 6.1. Способы представления спектров поглощения одних и тех же растворов. ( С1:С2:C3=1:2:3).
полосой поглощения. Наибольший интерес для анализа представляют следующие характеристики спектра: число максимумов (полос поглощения), их положение по шкале длин волн, высота максимума (значение молярного коэффициента e в максимуме поглощения), интенсивность полосы поглощения, ширина и форма полосы (рис. 6.2.).
Рис. 6.2. Полоса поглощения.
Спектр поглощения
Всего получено оценок: 46.
Всего получено оценок: 46.
Спектры, испускаемые нагретыми веществами – это спектры излучения. Существует еще один тип спектров – спектры поглощения. Поговорим о них более подробно.
Виды спектров
Свет, с которым имели дело первые исследователи, начиная с И.Ньютона, был светом нагретых предметов – Солнца или огня.
Ньютон показал, что белый свет представляет собой смесь различных цветов, которые могут быть разложены в спектр – в радужную полоску непрерывно изменяющегося цвета.
Позже было установлено, что такая радужная полоска характерна для излучения нагретых твердых и жидких веществ. Спектр такого типа был назван непрерывным.
Однако, нагретые газы при невысоких давлениях – дают совсем другую картину. Спектры нагретых газов дают не непрерывно изменяющуюся цветную полосу, а ряд узких линий, между которыми почти нет излучения. Такие спектры были названы линейчатыми.
Рис. 2. Примеры линейчатых спектров.
Особым видом линейчатых спектров являются полосатые спектры. Если газ находится под большим давлением, или состоит из многоатомных молекул, то его спектр представляет собой не узкие линии, а широкие полосы. Такие спектры были названы полосатыми.
Спектры поглощения
Вид спектров был объяснен в модели атома Н. Бора. Тепловое излучение испускает кванты света (фотоны) любых длин волн около какого-то среднего значения, спектр получается непрерывным. Атомы возбужденного газа излучают лишь при переходах электронов с одного энергетического уровня на другой. Поэтому на спектре присутствуют только узкие полоски. Если газы находятся под большим давлением, их атомы начинают взаимодействовать, и электроны могут переходить между соседними атомами, энергия таких переходов лежит в более широком диапазоне, в результате в спектре получаются широкие полосы. Тоже самое происходит, если атомы находятся в составе молекул.
Теория Н. Бора предсказывала не только излучение при переходе с более высокого уровня на более низкий. Электроны могут переходить с более низкого уровня на более высокий, если они поглощают определенное количество энергии. Таким образом, если газ облучать белым светом с непрерывным спектром, то фотоны, обладающие энергией перехода с более низкого уровня на более высокий, будут поглощаться электронами. В составе спектра энергии этой длины волны будет меньше, в спектре появятся темные полосы.
Проведенные эксперименты подтвердили это предположение. Если белый свет пропускать через холодный газ, а потом разлагать в спектр – то в непрерывном спектре появляются темные полосы как раз в тех местах, где кванты света поглощались атомами газа. Такие спектры были названы спектрами поглощения.
Рис. 3. Примеры спектров поглощения.
Спектры поглощения газов бывают тех же типов, что и спектры излучения – линейчатые и полосатые. Первые образуют газы при низких давлениях. Вторые – это спектры газов при высоких давлениях или молекулярные спектры поглощения.
Именно спектр поглощения позволяет исследовать химический состав Солнца. Нагретая поверхность Солнца излучает непрерывный спектр, а внешние слои солнечной атмосферы избирательно поглощают свет, образуя спектр поглощения, который может быть исследован. При таком исследовании был открыт элемент гелий.
Что мы узнали?
Согласно теории Н. Бора, электроны атомов излучают свет, переходя с более высоких на более низкие энергетические уровни. При переходах на более высокий уровень, электроны поглощают свет. Таким образом, если облучать газ непрерывным спектром – в нем появятся темные линии поглощения. Такой спектр называется спектром поглощения.