Составное число — натуральное число, которое больше единицы и которое не является простым. Все составные числа – это произведение 2-х натуральных чисел, которые больше единицы.
3 можно разделить, чтоб не было остатка на 1 и на 3;
5 можно разделить, чтоб не было остатка на 1 и на 5;
8 можно разделить, чтоб не было остатка на 1, на 2, на 4 и на 8;
9 можно разделить, чтоб не было остатка на 1, на 3 и на 9; и т. д.
Последовательность составных чисел начинается таким образом: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, …
У единицы есть лишь 1 делитель: единица. Поэтому единица не относится к составным и простым числам.
Каждое составное число кратно 3-м и больше натуральным числам.
В отличие от простых множителей, всякое составное число легко разложить на 2 множителя, и они будут больше единицы.
Самое большое составное число – число 4.
Свойства составных чисел.
Всякое составное число можно разложить до вида произведения простых множителей и только одним способом.
Докажем, что в натуральном ряду могут быть последовательности составных чисел всякой длины. К примеру:
Значит, в миллионе последовательных чисел N+2,N+3,N+4…N+1000001 будут лишь составные числа: N+2 делится на 2, N+3 делится на 3 и т. д.
Составно́е число́ — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух натуральных чисел, бо́льших 1.
Последовательность составных чисел начинается так:
Основная теорема арифметики утверждает, что любое составное число может быть разложено в произведение простых множителей, причём единственным способом (с точностью до порядка множителей).
Покажем, что в натуральном ряду можно найти последовательности составных чисел любой длины. Обозначим, например:
Тогда миллион последовательных чисел содержит только составные числа: делится на 2, делится на 3 и т. д.
См. также
Источники
Ссылки
Полезное
Смотреть что такое «Составное число» в других словарях:
СОСТАВНОЕ ЧИСЛО — натуральное число, не являющееся простым числом. Напр., 4; 18; 105 составное число … Большой Энциклопедический словарь
составное число — натуральное число, не являющееся простым числом. Например, 4; 18; 105 составное число. * * * СОСТАВНОЕ ЧИСЛО СОСТАВНОЕ ЧИСЛО, натуральное число, не являющееся простым числом. Напр., 4; 18; 105 составное число … Энциклопедический словарь
Составное число — натуральное число, не являющееся простым, т. е. имеющее делители, отличные от единицы и самого себя; например, 4; 18; 105 суть С. ч. Всякое С. ч. можно единственным способом представить в виде произведения простых множителей. См.… … Большая советская энциклопедия
СОСТАВНОЕ ЧИСЛО — натуральное число, не являющееся простым числом. Напр., 4; 18; 105 С. ч … Естествознание. Энциклопедический словарь
разлагать составное число на множители — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=23] Тематики защита информации EN factor a composite number … Справочник технического переводчика
Число Смита — такое составное число, сумма цифр которого (в данной системе счисления) равняется сумме цифр всех его простых сомножителей. Так, примером числа Смита может служить 202, поскольку 2 + 0 + 2 = 4, и 2 + 1 + 0 + 1 = 4 (202 = 2 * 101). Понятие чисел… … Википедия
Число Кармайкла — В теории чисел числом Кармайкла (кармайкловым числом) называется всякое составное число n, которое удовлетворяют сравнению для всех целых b, взаимно простых с n. Другими словами, числом Кармайкла называется составное число n, которое… … Википедия
Число — Число. Для того, чтобы описать совокупность однородных предметов,надо указать, какие предметы и сколько их. Напр. на этом столе лежатпять карандашей, в этой комнате семь стульев, в этом шкафу двеститридцать шесть книг. Слова: пять, семь, двести … Энциклопедия Брокгауза и Ефрона
Составное звено — Группа атомов, с помощью которой можно описать строение полимера. Составное звено, которое многократно повторяется, называют повторяющимся составным звеном. Если при получении полимера мономер полностью входит в его состав, то повторяющееся… … Википедия
Любое натуральное число больше единицы является либо простым либо составным. Простым называют число, которое делится без остатка только на само себя или на единицу (2, 3, 5, 7 и т.д.). Составным называется число, которое имеет больше двух делителей (4, 6, 8 и т.д.).
Таблица составных чисел до 100
4
6
8
9
10
12
14
15
16
18
20
21
22
24
25
26
27
28
30
32
33
34
35
36
38
39
40
42
44
45
46
48
49
50
51
52
54
55
56
57
58
60
62
63
64
65
66
68
69
70
72
74
75
76
77
78
80
81
82
84
85
86
87
88
90
91
92
93
94
95
96
98
99
100
Самое маленькое составное число
Исходя из определения и пользуясь таблицей составных чисел, видно, что наименьшее натуральное составное число — 4.
Важно! Единица — не является ни простым, ни составным числом
Как определить составное ли число?
Возвращаясь к определению, получаем, что если число делиться без остатка на любое число, кроме самого себя и единицы — значит оно составное. Проверить это можно путем перебора делителей (к примеру, начать делить на 2, затем на 3 и т.д.), либо зная признаки делимости.
Число 1 имеет только один делитель — единицу. Любое другое натуральное число а имеет по крайней мере два делителя — единицу и само число а. Действительно, а:1 = а, а :а = 1.
Число 5 имеет только два делителя — числа 1 и 5. Только два делителя имеют также, в частности, числа 2, 7, 11, 13. Такие числа именуются простыми.
Натуральное число называют простым, если оно имеет только два натуральных делителя: единицу и само это число.
Простых чисел бесчисленное множество. Максимального простого числа не бывает.
У чисел 6, 15, 49, 1000 есть больше двух делителей.
Натуральное число принято называть составным, если у него бывает больше двух натуральных делителей.
Поскольку единица имеет только один делитель, то ее не относят ни к простым, ни к составным числам.
Составное число 105 можно различными методами отобразить в виде произведения его делителей.
105 = 15 • 7 = 35 • 3 = 5 • 21 = 3 • 5 • 7.
Отличительной чертой конечного произведения выступает то, что все его множители — простые числа. Указывают, что число 105 разложено на простые множители. Любое составное число можно представить в виде произведения простых чисел, то есть разложить на простые множители.
Заметим, что любые два разложения числа на простые множители состоят из одних и тех же множителей и могут отличаться только их последовательностью. Как правило, произведение одинаковых множителей в разложении числа на простые множители заменяют степенью.
При разложении числа на простые множители целесообразно использовать схему, которую продемонстрируем на примере разложения числа 2940:
1) 2940 поделится на 2, 2940 : 2 = 1470;
2) 1470 поделится на 2, 1470 : 2 = 735;
3) 735 не поделится на 2, но поделится на 3, 735 : 3 = 245;
4) 245 не поделится на 3, но поделится на 5, 245 : 5 = 49;
5) 49 не поделится на 5, но поделится на 7, 49 : 7 = 7;
6) 7 поделится на 7, 7 : 7 = 1.
Если простые числа записать в порядке их возрастания, то образуется последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17…….
Последовательность простых чисел имеет много интересных свойств и тайн. Например, ученые Древней Эллады отметили, что среди простых чисел много таких разность которых равна двум, например: 3 и 5; 5 и 7; 11 и 13; 17 и 19 и т.д. Подобные пары чисел именуют простыми числами близнецами. Уже более 25 веков ученные стараются найти существуют ли максимальное число близнец, но до сих пор ответ на этот вопрос не найден.
На этом уроке мы познакомимся с двумя видами чисел. Они будут различаться количеством делителей.
Также узнаем, как можно разложить составное число на простые числа, изучим основную теорему арифметики и увидим решето Эратосфена.
Простые и составные числа
Если мы попытаемся разделить число 11 на какие-нибудь числа без остатка, то у нас получится это сделать, только если мы будем делить на 1 или на 11.
Получается, что число 11 имеет только два делителя: 1 и 11.
Если мы поступим так же с числами 9 и 18, то узнаем, что у числа 9 три делителя: 1, 3 и 9, а число 18 имеет шесть делителей: 1, 2, 3, 6, 9 и 18
Натуральное число простое, если оно имеет делителями только единицу и само себя.
Если натуральное число имеет больше двух делителей, то оно называется составным.
Таким образом, числа, которые мы используем при счете, в итоге можно разделить на три разные группы по количеству делителей:
Пример 1
Даны числа: 1, 7, 10, 12, 13, 24. Найдите все делители для каждого из чисел. Выпишите числа, имеющие:
В) больше двух делителей
Решение:
Число 1 имеет один делитель: 1
Число 7 имеет два делителя: 1, 7
Число 10 имеет четыре делителя: 1, 2, 5, 10
Число 12 имеет шесть делителей: 1, 2, 3, 4, 6, 12
Число 13 имеет два делителя: 1, 13
Число 24 имеет восемь делителей: 1, 2, 3, 4, 6, 8, 12, 24
Ответ:
А) один делитель- 1
Б) два делителя- 7, 13
В) больше двух делителей- 10, 12, 24
Таким образом, числа 7 и 13 являются простыми, потому что имеют по два делителя.
Числа 10, 12, 24 являются составными, потому что имеют больше двух делителей.
Пример 2
Даны числа: 2, 4, 17, 21, 28, 30, 42, 55, 127. Какие из них простые, а какие составные?
Найдите все делители для составных чисел.
Решение:
Простые: 2, 17, 127
Составные: 4, 21, 28, 30, 42, 55
Число 4 имеет три делителя: 1, 2, 4
Число 21 имеет четыре делителя: 1, 3, 7, 21
Число 28 имеет шесть делителей: 1, 2, 4, 7, 14, 28
Число 30 имеет восемь делителей: 1, 2, 3, 5, 6, 10, 15, 30
Число 42 имеет восемь делителей: 1, 2, 3, 6, 7, 14, 21, 42
Число 55 имеет четыре делителя: 1, 5, 11, 55
У меня есть дополнительная информация к этой части урока!
Простые и составные числа с древнейших времён интересовали разных учёных. Например, древнегреческий учёный Эратосфен (276- 194 гг. до н.э.) занимался вопросом таких чисел.
Он был главой Александрийской библиотеки и в его работах появились первые факты математической географии, вычисления величины земного шара с достаточно для того времени хорошей точностью.
Для своих вычислений он создал довольно простой способ, который использовался для исследования простых чисел и дошел до нашего времени без изменений. Этот способ назвали «Решето Эратосфена».
Пусть перед нами стоит задача нахождения простых чисел от 1 до 100 включительно.
Распишем все эти числа в квадрате 10 на 10.
После этого начинаем зачеркивать те, которые делятся на 2, потом на 3, потом на 5 (на 4 не берем, ведь они уже будут зачёркнуты, когда мы будем зачеркивать делящиеся на 2), потом на 7 и… всё!
Больше зачеркивать ничего не нужно, так как дальше работает доказанное правило: оставшиеся числа в таблице будут простыми.
Почему вдруг такую таблицу назвали решетом?
Получается вот что: мы убираем числа, потом повторяем с оставшимися числами, и то, что будет не зачёркнуто, как бы напоминает то, что ОСТАЕТСЯ В РЕШЕТЕ.
Если внимательно посмотреть на табличку, то можно увидеть что все вычеркнутые стоят на прямых линиях. А, кто видел решето, тот знает, что оно состоит из нитей, натянутых в виде прямых. Значит, можно построить такое решето, просто проводя прямую в тех местах, где число нужно вычеркнуть – вот и все. Поэтому мы и получаем подобие решета.
Решето Эратосфена работает по подобию простой вычислительной машины. И значит, еще очень давно, была изобретена СЧЕТНАЯ МАШИНА.
На сегодняшний день не существует формулы получения любого простого числа, зато еще с древности известно решето Эратосфена. Всё гениальное просто, как говорится в известном афоризме.
На числовой прямой простые числа не имеют никакой закономерности, стоят в хаотичном порядке. Но если мы соберем числовую прямую в решето Эратосфена большого размера, мы их все просеем через него и соберем без исключения и потерь.
Пройти тест и получить оценку можно после входа или регистрации