Что называется системой в физиологии
Физиология и основы гигиены человека
Основы анатомии и физиологии человека. Профессиональные заболевания
1. ВВЕДЕНИЕ
Анатомия и физиология человека – это важнейшие биологические науки, изучающие строение и функции человеческого организма. Как устроен человек, как функционируют его органы, должен знать не только каждый медик и биолог, но и специалист – инженер-эколог, который непосредственно занимается вопросами охраны здоровья человека и окружающей природной среды.
Организм человека представляет собой единую систему с общими законами развития, закономерностями строения и жизнедеятельности. Его функционирование подчиняется биологическим закономерностям, присущим всем живым организмам. В то же время человек социален и отличается от животных развитым мышлением, интеллектом, наличием второй сигнальной системы, общественными взаимоотношениями. Особенности формы, строения тела человека невозможно понять без анализа функций, равно как нельзя представить особенности функции любого органа без понимания его строения. Человеческий организм состоит из большого числа органов, огромного количества клеток, но это не сумма отдельных частей, а единый слаженный живой организм. Поэтому нельзя рассматривать органы без взаимосвязи друг с другом, без объединяющей роли нервной и сосудистой систем.
Анатомия и физиология, входящие в число естественнонаучных дисциплин, составляют фундамент для последующего изучения экологии, токсикологии, микробиологии. Без этих наук о структуре и процессах, происходящих в органах и их элементах, нельзя понять любые преобразования как в здоровом организме в условиях нормы, так и при заболеваниях в условиях вредного воздействия экологических факторов на организм. Ведь особенности строения тела человека, характерные для каждого индивидуума, передающиеся от родителей, определяются наследственными факторами, а также влиянием на данного человека внешней среды (экологические факторы, питание, физические нагрузки). Человек живет не только в условиях биологической среды, но и в обществе, в условиях определенных человеческих взаимоотношений. Поэтому он испытывает воздействие коллектива, социальных факторов. В связи с этим анатомия и физиология изучают человека не только как биологический объект, но учитывают при этом влияние на него социальной среды, условий труда и быта.
Особую роль при этом приобретает знание профессиональных заболеваний, обусловленных воздействием на организм человека различных факторов химической, физической и биологической природы.
Древние греки утверждали: «В здоровом теле – здоровый дух». Зная, как работает организм, какие факторы наиболее значимы в регуляции жизнедеятельности, можно предвидеть, каким образом возможно предотвратить нарушение функций отдельных систем и органов под влиянием различных вредных веществ, с которыми контактирует человек в результате своей производственной деятельности.
Основные физиологические понятия
Каждая научная дисциплина имеет собственный понятийный аппарат. Естественно, что и в физиологии, науке сформировавшейся еще в XIX веке, существуют собственные понятия и термины. Ниже приведены наиболее общие из них. Другие, термины и понятия, имеющие более узкое значение, будут рассмотрены в ходе изложения соответствующих разделов физиологии на последующих лекциях.
Основные физиологические понятия.
Система в физиологии это совокупность органов, тканей или других структурных образований, связанных общей функцией. Например, сердечно-сосудистая система обеспечивает с помощью сердца и сосудов доставку тканям питательных, регуляторных, защитных веществ и кислорода, а также отвод продуктов обмена; экспортная (секреторная) система клетки обеспечивает с помощью эндоплазматического ретикулума и аппарата Гольджи синтез и транспортировку из клеток гормонов, липопротеидов и других секретов.
Нормальная физиология: конспект лекций
В этой книге предельно сжато изложен курс лекций по нормальной физиологии. Благодаря четким определениям основных понятий студент может сформулировать ответ, за короткий срок усвоить и переработать важную часть информации, успешно сдать экзамен. Курс лекций будет полезен не только студентам, но и преподавателям.
Оглавление
Приведённый ознакомительный фрагмент книги Нормальная физиология: конспект лекций предоставлен нашим книжным партнёром — компанией ЛитРес.
ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей
1. Физиологическая характеристика возбудимых тканей
Основным свойством любой ткани является раздражимость, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.
Раздражители — это факторы внешней или внутренней среды, действующие на возбудимые структуры.
Различают две группы раздражителей:
1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);
Классификация раздражителей по биологическому принципу:
1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;
2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.
К общим физиологическим свойствам тканей относятся:
1) возбудимость — способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения.
Мерой возбудимости является порог раздражения. Порог раздражения — это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;
2) проводимость — способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;
3) рефрактерность — временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);
4) лабильность — способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.
2. Законы раздражения возбудимых тканей
Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:
1) закон силы раздражения;
2) закон длительности раздражения;
3) закон градиента раздражения.
Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона — все).
Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.
Закон длительности раздражений. Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега—Вейса—Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.
Закон градиента раздражения. Градиент — это крутизна нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация — это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Na-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.
Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.
3. Понятие о состоянии покоя и активности возбудимых тканей
О состоянии покоя в возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный уровень метаболизма, нет видимого функционального отправления ткани. Состояние активности наблюдается в том случае, когда на ткань действует раздражитель, при этом изменяется уровень метаболизма, и наблюдается функциональное отправление ткани.
Основные формы активного состояния возбудимой ткани — возбуждение и торможение.
Возбуждение — это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани, и наблюдается функциональное отправление ткани. Возбуждение характеризуется рядом признаков:
1) специфическими признаками, характерными для определенного вида тканей;
2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).
По характеру электрического ответа существует две формы возбуждения:
1) местное, нераспространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:
а) отсутствует скрытый период возбуждения;
б) возникает при действии любого раздражителя, т. е. нет порога раздражения, имеет градуальный характер;
в) отсутствует рефрактерность, т. е. в процессе возникновения возбуждения возбудимость ткани возрастает;
г) затухает в пространстве и распространяется на короткие расстояния, т. е. характерен декремент;
2) импульсное, распространяющееся возбуждение. Оно характеризуется:
а) наличием скрытого периода возбуждения;
б) наличием порога раздражения;
в) отсутствием градуального характера (возникает скачкообразно);
г) распространением без декремента;
д) рефрактерностью (возбудимость ткани уменьшается).
Торможение — активный процесс, возникает при действии раздражителей на ткань, проявляется в подавлении другого возбуждения. Следовательно, функционального отправления ткани нет.
Торможение может развиваться только в форме локального ответ.
Выделяют два типа торможения:
1) первичное, для возникновения которого необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения;
2) вторичное, которое не требует специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых структур.
Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выражены. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.
4. Физико-химические механизмы возникновения потенциала покоя
Мембранный потенциал (или потенциал покоя) — это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:
1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов К, снаружи его мало. Ионов Na и ионов Cl больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией;
2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.
За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта — диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя — отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:
2) силы электростатического взаимодействия.
Значение электрохимического равновесия:
1) поддержание ионной асимметрии;
2) поддержание величины мембранного потенциала на постоянном уровне.
В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентрационно-электрохимическим.
Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм — натрий-калиевый насос. Натрий-калиевый насос — механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Работа натрий-калиевого насоса обеспечивает:
1) высокую концентрацию ионов К внутри клетки, т. е. постоянную величину потенциала покоя;
2) низкую концентрацию ионов Na внутри клетки, т. е. сохраняет нормальную осмолярность и объем клетки, создает базу для генерации потенциала действия;
3) стабильный концетрационный градиент ионов Na, способствуя транспорту аминокислот и сахаров.
5. Физико-химические механизмы возникновения потенциала действия
Потенциал действия — это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.
При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К — в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя — положительный.
Компоненты потенциала действия:
2) высоковольтный пиковый потенциал (спайк);
3) следовые колебания:
а) отрицательный следовой потенциал;
б) положительный следовой потенциал.
Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменой, и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов, и возникает локальный ответ.
Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации — это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.
Высоковольтный пиковый потенциал (спайк).
Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:
1) восходящей части — фазы деполяризации;
2) нисходящей части — фазы реполяризации.
Лавинообразное поступление ионов Na в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов Na войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов Na внутрь клетки продолжается до момента электрохимического равновесия по иону Na. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов Na и от степени проницаемости мембраны к ионам Na. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам Na происходит инактивация активационных ворот, снижается проницаемость к ионам Na и возрастает проницаемость к ионам K, натрий-калиевый насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.
В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы — положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал — следовая деполяризация в результате повышенной проницаемости мембраны к ионам Na, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.
Физиология и основы гигиены человека
Основы анатомии и физиологии человека. Профессиональные заболевания
1. ВВЕДЕНИЕ
Анатомия и физиология человека – это важнейшие биологические науки, изучающие строение и функции человеческого организма. Как устроен человек, как функционируют его органы, должен знать не только каждый медик и биолог, но и специалист – инженер-эколог, который непосредственно занимается вопросами охраны здоровья человека и окружающей природной среды.
Организм человека представляет собой единую систему с общими законами развития, закономерностями строения и жизнедеятельности. Его функционирование подчиняется биологическим закономерностям, присущим всем живым организмам. В то же время человек социален и отличается от животных развитым мышлением, интеллектом, наличием второй сигнальной системы, общественными взаимоотношениями. Особенности формы, строения тела человека невозможно понять без анализа функций, равно как нельзя представить особенности функции любого органа без понимания его строения. Человеческий организм состоит из большого числа органов, огромного количества клеток, но это не сумма отдельных частей, а единый слаженный живой организм. Поэтому нельзя рассматривать органы без взаимосвязи друг с другом, без объединяющей роли нервной и сосудистой систем.
Анатомия и физиология, входящие в число естественнонаучных дисциплин, составляют фундамент для последующего изучения экологии, токсикологии, микробиологии. Без этих наук о структуре и процессах, происходящих в органах и их элементах, нельзя понять любые преобразования как в здоровом организме в условиях нормы, так и при заболеваниях в условиях вредного воздействия экологических факторов на организм. Ведь особенности строения тела человека, характерные для каждого индивидуума, передающиеся от родителей, определяются наследственными факторами, а также влиянием на данного человека внешней среды (экологические факторы, питание, физические нагрузки). Человек живет не только в условиях биологической среды, но и в обществе, в условиях определенных человеческих взаимоотношений. Поэтому он испытывает воздействие коллектива, социальных факторов. В связи с этим анатомия и физиология изучают человека не только как биологический объект, но учитывают при этом влияние на него социальной среды, условий труда и быта.
Особую роль при этом приобретает знание профессиональных заболеваний, обусловленных воздействием на организм человека различных факторов химической, физической и биологической природы.
Древние греки утверждали: «В здоровом теле – здоровый дух». Зная, как работает организм, какие факторы наиболее значимы в регуляции жизнедеятельности, можно предвидеть, каким образом возможно предотвратить нарушение функций отдельных систем и органов под влиянием различных вредных веществ, с которыми контактирует человек в результате своей производственной деятельности.
Что называется системой в физиологии
1) Общая физиология – изучает общие закономерности работы органов и систем организма.
2) Частная физиология – изучает функции различных физиологических систем, т.е. совокупности органов и тканей, выполняющих одну функцию.
3) Специальная физиология – изучает функции специальных организмов (детей и подростков).
4) Физиология различных состояний (например, физиология труда).
5) Клиническая физиология – изучает функции организма при возникновении заболеваний.
Нормальная физиология изучает функции здорового организма.
Задачи физиологии состоят в изучении функций:
1. Здорового организма в целом.
2. Различных органов.
3. Физиологических и функциональных систем.
4. Различных клеток, клеточных популяций.
5. Клеточных структур.
6. Всех органов и систем в их взаимосвязи.
В истории физиологии можно условно выделить два этапа:
1. Донаучный (до 1628 года), представителями которого считаются знаменитые ученые древности (Гиппократ, Авицена, Гален, Парацельс и многие другие).
2. Научный этап связан с выходом в свет в 1628 году научного труда английского врача У. Гарвея «Анатомические исследования о движении сердца и крови животных».
Краткая история развития физиологии
Вклад в развитие физиологии
Заложил основы для понимания роли отдельных систем и функций организма как целого.
– центром кровообращения является печень.
– сердце состоит из двух частей: левого и правого сердца.
– правое сердце наполнено кровью и разносит ее по всему организму;
– левое сердце наполнено божественной пневмой, которая разносится по всему организму.
– между левым и правым сердцем имеется отверстие, через которое кровь левого сердца питает правое.
Работа Везалия «О строении человеческого сердца» подготовила почву для открытий в области физиологии.
Сформулировал рефлекторный принцип организации движений – принцип отражения в ответ на возбуждающий их стимул. Пытался законами механики объяснить как ход небесных светил, так и поведение животных.
В 1628 году опубликовал свою работу «Анатомические исследования о движении сердца и крови у животных». Этот год считается годом становления физиологии. Открыл большой круг кровообращения. Ввел в практику научных исследований прием, получивший название вивисекции, или живосечения.
Используя микроскоп, в 1661 году показал, что артерии и вены соединяются между собой мельчайшими сосудами –капиллярами, благодаря которым в организме образуется замкнутая сеть кровеносных капилляров.
Считается «отцом русской физиологии». Занимался вопросами транспорта газов кровью; разработкой проблем гипоксических состояний; показал, что гемоглобин эритроцитов переносит не только кислород, но и углекислый газ. Разрабатывал вопросы физиологии труда. Изучая процесс утомления, впервые научно установил значение активного отдыха. Всеобщее значение получило открытие И.М. Сеченовым явления центрального торможения. В 1863 году вышла в свет его знаменитая книга «Рефлексы головного мозга», в которой сформулировано материалистическое положение о рефлекторной деятельности головного мозга. Создал первую в России физиологическую школу.
Создал учение о высшей нервной деятельности (поведения) человека и животных, ее проявлениях в норме и патологии. Научная деятельность И.П. Павлова развивалась в трех основных направлениях: изучение важнейших проблем физиологии кровообращения, физиологии пищеварения, высшей нервной деятельности В 1904 г. И.П. Павлов получил Нобелевскую премию за работы в области физиологии пищеварения. В 1935 г. Международный физиологический конгресс присвоил ему звание «старейшины физиологов мира». Разработал теорию условных рефлексов.
В XX веке выделились два основных направления развития физиологической науки:
1. Глубокое изучение физико-химических процессов в клетках, мембранах, преобразований на молекулярном уровне. Делаются принципиальные открытия в области цитофизиологии и цитохимии, утверждается мембранная теория биоэлектрических потенциалов. За создание этой теории и установление ионных механизмов возбуждения нейронов в 1963 году были удостоены Нобелевской премии Д.Экклс, Э.Хаксли и А. Ходжкин.
2. Формирование представлений о единстве организма, гомеостазе (К.Бернар, У.Кеннон) и взаимосвязи организма с окружающей внешней средой.
В физиологии существуют 2 метода исследования:
1. Наблюдение за различными проявлениями и нарушениями, возникающими при заболеваниях и травмах у животных и человека;
2. Опыт, который бывает 2 видов:
Хронический (предложен Павловым), когда после проведенной операции животное выживает, проводится наблюдение за его жизнью. В течение длительного времени изучается функция органа, изменение функций под влиянием различных условий, влияние нервной и гуморальной регуляции на функции организма.
Функция – специфическая деятельность системы или органа. Например, функциями желудочно-кишечного тракта являются моторная, секреторная, всасывательная.
Физиологическая система – жестко генетически детерминированная совокупность клеток, тканей и органов, объединяемая общей функцией.
Норма – это предел оптимального функционирования живой системы. Физиологическая норма – биологический оптимум жизнедеятельности.
Регуляция – совокупность процессов, ведущих к оптимизации физиологических функций в меняющихся условиях внешней и внутренней среды организма.
Реакция – изменение (усиление или ослабление) деятельности организма в ответ на внутреннее или внешнее раздражение.
Раздражение – воздействие на живую ткань внешних или внутренних раздражителей.
Раздражитель – фактор внешней среды, вызывающий переход системы из состояния функционального покоя в состояние функциональной активности.
Возбудимость – способность ткани отвечать на раздражение возбуждением. Возбудимость зависит от уровня обменных процессов и заряда клеточной мембраны. Показатель возбудимости – порог раздражения – та минимальная сила раздражителя, которая вызывает первую видимую ответную реакцию ткани. Раздражители бывают: подпорговые, пороговые, надпороговые. Возбудимость и порог раздражения обратно пропорциональные величины: чем меньше порог раздражения, тем больше возбудимость.
Возбудимы ткани – ткани, способные в ответ на действие раздражителей переходить из состояния физиологического покоя в состояние возбуждения. К возбудимым относятся три вида тканей: нервная, мышечная и железистая (эпителиальная).
Проводимость – способность ткани проводить возбуждение по всей своей длине. Показатель проводимости – скорость проведения возбуждения (по скелетной ткани – 6-13 м/с, по нервной ткани – до 120 м/с). Проводимость зависит от интенсивности обменных процессов, от возбудимости (прямо пропорциональна).
Лабильность (функциональная подвижность) – способность ткани воспроизводить определенное количество волн возбуждения в единицу времени. Это свойство характеризует скорость возникновения возбуждения. Показатель (мера) лабильности – максимальное количество волн возбуждения в данной ткани: нервное волокно – 500-1000 имп/с, мышечная ткань – 200-250 имп/с, синапс – 100-125 имп/с. Лабильность зависит от уровня обменных процессов в ткани, возбудимости, рефрактерности.
Рефлекс – ответная реакция организма на внешнее и внутреннее раздражение, осуществляемая с участием ЦНС.
Торможение – подавление или угнетение деятельности клеток, тканей или органов, т.е. процесс, приводящий к уменьшению или предупреждению возбуждения. Возбуждение и торможение представляют собой противоположные и взаимосвязанные процессы.
Автоматия – свойство некоторых клеток, тканей и органов возбуждаться под влиянием возникающих в них импульсов, без воздействия внешних раздражителей. Автоматией обладают, например, гладкая и сердечная мышечная ткани.
Гомеостаз (гомеостазис) – постоянство внутренней среды организма.
Внутренняя среда организма – совокупность жидкостей (кровь, лимфа, тканевая жидкость), принимающих непосредственное участие в процессах обмена веществ и поддержании гомеостаза в организме.
Условные рефлексы – индивидуально приобретенные системные приспособительные реакции, возникающие на основе образования в ЦНС временной связи между условным и безусловно-рефлекторным раздражителями.
Для каждого организма характерна определенная организация ею структур. Выделяют шесть уровней организации человеческого организма:
1) молекулярный
Молекулярный уровень организации. Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул (биополимеров): нуклеиновых кислот, белков, жиров (липидов), полисахаридов, витаминов, ферментов и других органических веществ. С молекулярного уровня начинаются важнейшие процессы жизнедеятельности ор1анизма.
Клеточный уровень организации. Клетка – элементарная структурная, функциональная и генетическая единица многоклеточного организма. Функционально сходные клетки объединяются в ткани.
Тканевой, уровень организации. Ткани – это группы клеток и межклеточного вещества, объединенные общим строением, функцией и происхождением. Различают четыре основные группы тканей: эпителиальная, соединительная, мышечная и нервная.
Органный уровень организации. Различные ткани, соединяясь между собой, образуют органы: сердце, почки, легкие, головной мозг, спинной мозг, мышца, мочевой пузырь, матка, грудная железа, желудок, глаз, ухо и т.д. Орган занимает постоянное положение, имеет определенное строение, форму и функции Органы, сходные по своему строению, функции и развитию, объединяются в системы органов
Системный уровень организации. Совокупность органов, участвующих в выполнении какого-либо сложного акта деятельности, образующих анатомические и функциональные объединения – системы органов. Различают девять основных систем организма.
1. Система органов движения или опорно-двигательный аппарат объединяет все кости (скелет), их соединения (суставы, связки) и скелетные мышцы. Благодаря этой системе организм передвигается во внешней среде; кости скелета защищают внутренние органы от механических повреждений.
2. Пищеварительная система объединяет органы, выполняющие функции приема пищи, ее механической и химической переработки, всасывания питательных веществ в кровь и лимфу и выведения непереваренных частей пищи.
3. Дыхательная система осуществляет потребление организмом кислорода и выделение углекислого газа, т.е. функцию газообмена между организмом и внешней средой.
4. Мочевыделительная система выполняет функцию выделения из организма конечных продуктов обмена и функцию поддержания постоянства внутренней среды организма (гомеостаза), в частности водно-солевого баланса.
5. Половая система объединяет органы размножения и выполняет функцию продления рода человеческого. Различают мужскую и женскую половые системы, которые включают наружные и внутренние половые органы (гонады).
6. Эндокринная система состоит из желез внутренней секреции, к которым относятся гипофиз, эпифиз, вилочковая железа, щитовидная, поджелудочная, паращитовидная, половые железы, надпочечники. Они вырабатывают особые активные вещества (гормоны), которые непосредственно
всасываются в кровь. Гормоны разносятся кровью по всему организму и оказывают регулирующее влияние на различные функции, прежде всего на обмен
веществ, активность генов, процессы онтогенетическою развития, дифференцировку тканей, формирование пола, размножение, тонус коры головного
мозга и т.д.
7. Сердечнососудистая система (ССС) обеспечивает непрерывное движение крови в организме (кровообращение), благодаря чему
осуществляются транспортные функции крови: доставка тканям кислорода, питательных веществ и гормонов и удаление из тканей веществ, образующихся в результате процессов обмена.
8. Система органов чувств объединяет органы зрения, слуха, обоняния, вкуса и осязания. Они воспринимают информацию внешней среды, играют важную роль в обмене информацией между организмом и средой.
9. Нервная система играет ведущую роль в объединении организма в единое целое, регулирует деятельность всех внутренних органов и систем органов. Она осуществляет связь организма с окружающей внешней средой на основе условных и безусловных рефлексов, обеспечивая приспособление к изменяющимся условиям жизни, а также осуществляет психическую деятельность человека, возникающую на основе физиологических процессов ощущения, восприятия и мышления.
Уровень целостного организма. Организм человека функционирует как единое целое и представляет собой саморегулирующуюся систему. Взаимосвязанная, согласованная работа всех органов и физиологических систем обеспечивается гуморальной и нервной регуляцией.
Физиологические функции – это проявления жизнедеятельности, имеющие приспособительное значение.
Основной функцией живого организма является обмен веществ и энергии. Этот процесс состоит в совокупности химических и физических изменений, в превращениях веществ и энергии, постоянно и непрерывно происходящих в организме и во всех его структурах. Он неодинаков у организмов, стоящих на разных ступенях филогенетического развития. Обмен веществ, или метаболизм, является необходимым условием жизни. Он отличает живое от неживого, мир живых существ от неорганического мира. Изменения вещества и превращения энергии происходят и в неорганическом мире; однако имеется принципиальное различие этих процессов в живом организме и в неживой природе.
Рис. 1. Схема обмена веществ в клетке
С обменом веществ связаны все остальные физиологические функции, будь то рост, развитие, размножение, питание и пищеварение, дыхание, секреция и выделение продуктов жизнедеятельности, движение и реакции на изменения внешней среды и т. п.
Развитие и рост. С момента зарождения и до смерти в результате обмена веществ происходит развитие организма – закономерные изменения его химического состава и строения (качественные изменения). В процессе развития до созревания усложняется строение клеток, тканей, органов и систем органов. Развитие происходит гетерохронно, т. е. клетки, ткани и органы созревают неодновременно. С определенного возраста начинается старческое изменение строения органов, также совершающееся гетерохронно. Одновременно на протяжении всей жизни изменяются функции. Накопление количественных изменений строения и функций приводит к появлению или исчезновению новых качеств, новых свойств организма и его поведения. В результате развития в определенные периоды жизни изменяется рост организма.
Рост – увеличение размеров развивающегося организма и его органов с изменением их формы, объема и массы, т.е. количественные изменения в организме. При росте возрастает масса активных частей организма вследствие размножения клеток и увеличение межклеточных элементов, их объема и массы («живого вещества»). Обычно рост прекращается с достижением зрелости. Рост зрелого организма никогда не бывает пропорциональным. Рост регулируется нервной системой и железами внутренней секреции.
Согласованная деятельность различных систем организма, поддержание относительного постоянства клеточного состава и физико-химических свойств внутренней среды (гомеостаза) обеспечивается нервным и гуморальным механизмами регуляции функций.
Гуморальный механизм регуляции (от латинского humor – жидкость) филогенетически более древний и связан со способностью клеток изменять интенсивность жизнедеятельности в зависимости от изменения физико-химических параметров среды. Гуморальный механизм регуляции функций осуществляется через кровь, в нее поступают различные по природе и физиологическому значению химические вещества: продукты обмена веществ, гормоны, медиаторы, биологически активные вещества. Током крови они разносятся ко всем органам (не имеют определенного адресата) и действуют на те или иные клетки органов (в зависимости от их чувствительности к данному химическому веществу), вызывая активизацию или торможение их функциональной деятельности. Но гуморальный механизм не может обеспечить быструю перестройку деятельности организма, быстрые адаптивные реакции, так как химические вещества разносятся по организму кровью, а скорость кровотока невелика.
В процессе эволюции сформировалась нервная система и возник второй, более молодой и более совершенный нервный механизм регуляции функций организма. Нервный механизм в отличие от гуморального обеспечивает быструю сигнализацию нервной системы об изменениях во внешней или внутренней среде и осуществляет быстрые адекватные реакции на эти изменения. Нервный механизм обладает преимуществами перед гуморальным механизмом:
· имеет точный адресат (возникшие в рецепторах нервные импульсы по определенным нервным волокнам поступают
в определенный отдел ЦНС, а от нее – к определенным органам);
· имеет высокую скорость проведения нервных импульсов – от 3 до 120 м/сек.
Нервный и гуморальный механизмы регуляции функций тесно взаимосвязаны между собой. Гуморальные факторы оказывают влияние на деятельность нервных клеток ЦНС, она в свою очередь изменяет деятельность органов. С другой стороны – образование и поступление в кровь гуморальных веществ регулируется нервной системой.
Таким образом, в организме существует единая нервно-гуморальная система, обеспечивающая саморегуляцию функций, без чего невозможно существование организма.
Основные параметры, характеризующие внутреннюю среду, называются гомеостатическими константами. Например, концентрация глюкозы, натрия и других ионов, величина мембранного потенциала, значение артериального и осмотического давления, напряжения газов крови, температура. Гомеостатические параметры могут быть жесткими и пластичными, меняться в зависимости от индивидуальных, возрастных, половых, социальных и других условий. Жесткие константы (например, осмотическое давление крови, рН) допускают лишь незначительные отклонения от своего уровня, пластичные константы (например, уровень кровяного давления или питательных веществ в крови) варьируют в довольно большом диапазоне и в течение длительного времени. Значительная вариабельность уровня кровяного давления, свойственная здоровому человеку в норме, имеет определенный физиологический смысл. Так, повысившееся кровяное давление в результате физической нагрузки или эмоционального сдвига улучшает кровоснабжение многих органов и тканей. Вместе с тем длительное повышение кровяного давления приводит к нарушениям кровоснабжения – кровоизлияниям, таким как инфаркты и инсульты.
Любые физиологические, физические, химические или эмоциональные воздействия (будь то температура воздуха, изменение атмосферного давления, обычная терапевтическая процедура или волнение, радость, печаль, горе, прием лекарства и т. д.) могут явиться поводом к выходу организма из состояния динамического равновесия, в котором он пребывает. Таким образом, любое воздействие может оказаться «отклоняющим», или «возмущающим». Рассмотрим достаточно простой пример. Углеводы служат важнейшим источником энергии для организма. В результате распада и главным образом «сгорания» в кислороде молекулы углеводов, богатые энергией, постепенно превращаются в молекулы конечных продуктов — воды и двуокиси углерода, обладающих малым запасом энергии. Энергия, высвобождающаяся при этом, идет на покрытие энергетических потребностей клеток организма. Ни одна клетка, ни один орган не могут существовать даже кратковременно без расходования энергии и потребления «горючего» в виде углеводов.
Наиболее чувствительны к недостатку снабжения «горючим» нервные и мышечные клетки. Особенно мозг, так как для него глюкоза является единственным источником энергии. Даже малое и кратковременное снижение уровня сахара в крови (гипогликемия) приводит к тяжелым функциональным расстройствам, вызывающим угрожающие явления в состоянии всего организма. Функции нервных образований всецело зависят от содержания сахара в крови. В крови здорового человека находится 4,4-6,0 ммоль/л. глюкозы.
Такой уровень, по-видимому, наиболее благоприятен для протекания процессов жизнедеятельности и обмена веществ. Он обеспечивается благодаря очень точно поддерживаемому балансу между потреблением сахара и его поступлением в кровь. Существует не менее семи-восьми механизмов, поддерживающих этот баланс. Центральную роль здесь играет печень.
Потребление сахара крови особенно возрастает при повышенной мышечной деятельности. Можно было бы ожидать, что при этом уровень сахара в крови резко понизится и наступит опасное состояние, называемое гипогликемией. Однако этого не происходит: в печени как в депо углеводов гликоген распадается до стадии глюкозы под действием гормонов поджелудочной железы (гликогена) и надпочечников (адреналина), которая и обеспечивает замену сахара в крови. Можно было бы ожидать также и контрастного явления: после приема пищи, богатой углеводами, последние, всасываясь в тонкой кишке, в большом количестве поступают в кровь, что должно было бы привести к значительному и стойкому повышению уровня сахара в крови. Но и этого не наблюдается. Это обусловлено тем фактом, что оттекающая от кишки, обогащенная сахаром кровь поступает в общий кровоток не сразу, а проходит сначала по воротной вене через печень. В клетках печени глюкоза венозной крови поглощается, образуется гликоген под действием гормона поджелудочной железы инсулина, так что содержание сахара в крови, поступающего из печени в общий кровоток, сохраняется приблизительно на нормальном уровне.