Что называется системой команд исполнителя алгоритма
Билет № 6. 1. Понятие алгоритма. Исполнитель алгоритма
1. Понятие алгоритма. Исполнитель алгоритма. Система команд исполнителя (на примере учебного исполнителя). Свойства алгоритма. Способы записи алгоритмов, блок-схемы.
Появление алгоритмов связывают с зарождением математики. Более 1000 лет назад (в 825 году) ученый из города Хорезма Абдулла (или Абу Джафар) Мухаммед бен Муса аль-Хорезми создал книгу по математике, в которой описал способы выполнения арифметических действий над многозначными числами. Само слово алгоритм возникло в Европе после перевода на латынь книги этого математика.
Алгоритм – описание последовательности действий (план), строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов.
Вы постоянно сталкиваетесь с этим понятием в различных сферах деятельности человека (кулинарные книги, инструкции по использованию различных приборов, правила решения математических задач. ). Обычно мы выполняем привычные действия не задумываясь, механически. Например, вы хорошо знаете, как открывать ключом дверь. Однако, чтобы научить этому малыша, придется четко разъяснить и сами эти действия и порядок их выполнения:
1. Достать ключ из кармана.
2. Вставить ключ в замочную скважину.
3. Повернуть ключ два раза против часовой стрелки.
4. Вынуть ключ.
Если вы внимательно оглянитесь вокруг, то обнаружите множество алгоритмов которые мы с вами постоянно выполняем. Мир алгоритмов очень разнообразен. Несмотря на это, удается выделить общие свойства, которыми обладает любой алгоритм.
Свойства алгоритмов:
1. Дискретность (алгоритм должен состоять из конкретных действий, следующих в определенном порядке);
2. Детерминированность (любое действие должно быть строго и недвусмысленно определено в каждом случае);
3. Конечность (каждое действие и алгоритм в целом должны иметь возможность завершения);
4. Массовость (один и тот же алгоритм можно использовать с разными исходными данными);
5. Результативность (отсутствие ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значениях).
Виды алгоритмов:
1. Линейный алгоритм (описание действий, которые выполняются однократно в заданном порядке);
2. Циклический алгоритм (описание действий, которые должны повторятся указанное число раз или пока не выполнено задание);
3. Разветвляющий алгоритм (алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий)
4. Вспомогательный алгоритм (алгоритм, который можно использовать в других алгоритмах, указав только его имя).
Стадии создания алгоритма:
1. Алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает.
2. Алгоритм должен быть представлен в форме, понятной тому объекту (в том числе и человеку), который будет выполнять описанные в алгоритме действия.
Объект, который будет выполнять алгоритм, обычно называют исполнителем.
Идеальными исполнителями являются машины, роботы, компьютеры.
Исполнитель способен выполнить только ограниченное количество команд. Поэтому алгоритм разрабатывается и детализируется так, чтобы в нем присутствовали только те команды и конструкции, которые может выполнить исполнитель.
Исполнитель, как и любой объект, находится в определенной среде и может выполнять только допустимые в нем действия. Если исполнитель встретит в алгоритме неизвестную ему команду, то выполнение алгоритма прекратится.
Компьютер – автоматический исполнитель алгоритмов.
Алгоритм, записанный на «понятном» компьютеру языке программирования, называется программой.
Б6. Понятие алгоритма. Исполнитель алгоритма. Система команд исполнителя (на примере учебного исполнителя). Свойства алгоритма. Способы записи алгоритмов; блок-схемы.
Слово «алгоритм» произошло от имени арабского математика 9 века аль-Хорезми, который сформулировал правила выполнения арифметический действий.
Алгоритм – точное и понятное предписание исполнителю выполнить конечную последовательность команд, приводящую от исходных данных к исходному результату.
Примеры: распорядок дня, порядок приготовления блюда, инструкция и т.д.)
Исполнитель алгоритма – это тот, кто выполняет алгоритм (человек, животное, машина, компьютер).
Система команд исполнителя – это вся совокупность команд, которые исполнитель умеет выполнять (понимает). Алгоритм можно строить только из команд, входящих в систему команд исполнителя.
Например, исполнитель Робот может выполнять команды вперед, назад, влево, вправо, закрасить. Он перемещается по клеточному полю, ограниченному стеной и содержащему стены. Робот не может пройти сквозь стену.
Свойства алгоритма:
1.Результативность (конечность) – возможность получения из исходных данных результата за конечное число шагов. (Например, при выполнении алгоритма сложения 2 чисел должны получить сумму).
2.Массовость – возможность применения алгоритма к большому количеству различных исходных данных. (Например, Можно сложить любые 2 числа, зная алгоритм сложения.)
3.Детерминированность (определенность, точность) – каждая команда должна однозначно определять действие исполнителя.
4.Понятность – команда должна быть записана на понятном компьютеру языке.
5.Дискретность – разбиение алгоритма на отдельные команды.
Способы записи алгоритма:
1) На естественном языке – запись в виде отдельных команд на понятном человеку языке.
2) Графический – на языке блок-схем, с помощью геометрических фигур (овал, прямоугольник, параллелограмм, ромб).
3) На алгоритмическом языке – язык записи алгоритмов, для обучения программированию. Команды записываются на русском языке.
Название | Элемент блок-схемы |
начало-конец | |
процесс (действие) | |
условие | |
ввод-вывод | |
цикл |
Б7.Основные алгоритмические структуры: следование, ветвление, цикл; изображение на блок-схемах. Разбиение задач на подзадачи. Вспомогательные алгоритмы.
Алгоритмические конструкции.Внутри алгоритмов можно выделить группы шагов, отличающиеся внутренней структурой – алгоритмические конструкции.
Основными алгоритмическими конструкциями являются линейная последовательность шагов (или следование), ветвление и цикл.
Алгоритм, в котором команды выполняются последовательно одна за другой, называется линейным алгоритмом.
Так выглядит линейный алгоритм на языке блок схем:
Пример: алгоритм включения компьютера:
В этом алгоритме все действия должны выполняться последовательно одно за другим: нельзя приступить к работе если не включено питание или монитор.
В алгоритмическую структуру «ветвление» входит условие, в зависимости от истинности условия выполняется та или иная последовательность команд (серий).
Условие – это высказывание, которое может быть истинным или ложным. В условии два числа, две строки, две переменных или строковых выражения сравниваются между собой с использованием операций сравнения (>, =,
Запись на алгоритмическом языке: ДляСчетчик От НачЗначДо КонЗнач повторять нц Тело цикла кц Пример: Повторять 10 раз Застегни пуговицу |
Циклы с условием – используется когда необходимо повторять тело цикла, но заранее неизвестно какое количество раз это надо сделать.
Понятие исполнителя, система команд исполнителя
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Дата: Класс: 9 урок 3
Понятие исполнителя, система команд исполнителя
познакомить с понятием «алгоритм», организовать совместную деятельность по изучению свойств алгоритма и его исполнителей
Обучать основам программирования.
Развивать логическое мышление.
расширить знания учащихся: на конкретном примере рассмотреть как решаются задачу, составляются алгоритмы в расчете на какого-либо исполнителя; развитие умения анализировать.
Деятельность учителя
Деятельность обучающихся
наглядности
I. Организационный момент . Приветствует учеников, проверяет готовность к уроку, желает успеха.
Ученики осмысливают поставленную цель.
II. Проверка домашней работы.
Каждая группа должна
составить подробную инструкцию для какого-либо действия:
заваривание чая, решение уравнения, переход дороги по свето-
фору и др. Инструкцию ученики оформляют на альбомных лис-
тах или ватмане (раздает учитель).
Инструкции учащихся вывешиваются на доске и обсуж-
даются по следующим вопросам:
Можно ли один алгоритм, например инструкцию по зава-
риванию чая, применить для выполнения аналогичного дейст-
вия, например заваривания травяного сбора? (Свойство массо-
вости.)
Все ли инструкции просты и понятны? (Свойство выпол-
нимости и понятности команд.)
Все ли команды четко прописаны и в правильной последо-
вательности? (Свойство детерминированности.)
Определение алгоритма и свойства ученики записывают
в тетрадь.
Ученики отвечают на вопросы учителя.
III. Актуализация знаний
Индивидуальная работа. Учитель раздает карточки. Задание:
По методу «ДЖИГСО» изучают новый материал.
Стадии создания алгоритма:
1. Алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает (определить цель, наметить план действий).
2. Алгоритм должен быть представлен в форме, понятной тому объекту (в том числе и человеку), который будет выполнять описанные в алгоритме действия (выбрать среду и объект алгоритма, детализировать алгоритм). Объект, который будет выполнять алгоритм, обычно называют исполнителем.
Компьютер – автоматический исполнитель алгоритмов.
Алгоритм, записанный на «понятном» компьютеру языке программирования, называется программой. Каждый исполнитель характеризуется средой («местом обитания») и системой команд.
Основными характеристиками исполнителя являются: среда, система команд, элементарные действия, отказы.
Среда (или обстановка) — это «место обитания», множество объектов, которые окружают исполнителя. Каждый исполнитель может выполнять команды только из некоторого строго заданного списка — системы команд исполнителя. Совокупность всех команд, которые исполнитель может выполнить, называется системой команд исполнителя (СКИ). Для каждой команды должны быть заданы условия применимости (в каких состояниях среды может быть выполнена команда) и описаны результаты выполнения команды. За каждой командой из системы команд исполнителя закреплено конкретное элементарное действие. Исполнителя можно представить в виде устройства с кнопочным управлением. Каждая кнопка соответствует одной команде исполнителю, и нажатие означает вызов этой команды. После вызова команды исполнитель совершает элементарное действие, соответствующее данной команде. Важно отметить, что нас интересует результат, а не механизм выполнения команды. Отказы исполнителя возникают при вызове команды в недопустимом для данной команды состоянии среды. Другими словами – это случай, когда попытка выполнить команду приводит к аварии. Учебными исполнителями называют различные образы на экране компьютера, которыми можно управлять, отдавая команды. Используются они для обучения составлению управляющих алгоритмов. Есть много различных учебных исполнителей, придуманных для занятий по информатике. У них разные, часто забавные названия: Черепашка, Робот, Чертежник, Кенгуренок, Пылесосик, Муравей, Кукарача и др. Одни исполнители создают рисунки на экране, другие складывают слова из кубиков с буквами, третьи перетаскивают предметы из одного места в другое. Все эти исполнители управляются программным путем. Любому из них свойственна определенная среда деятельности, система команд управления, режимы работы. С помощью каждого из таких исполнителей можно учиться строить алгоритмы управления. Многие из учебных исполнителей занимаются рисованием на экране компьютера. Из названных выше, это Черепашка, Кенгуренок, Чертежник. Эту группу можно назвать графическими исполнителями.
Задание 1.
Откройте окно исполнителя Кузнечик.Откройте пульт для исполнителя Кузнечик.
Используя пульт, напишите алгоритм для получения из числа 4 числа 25.
Примечание: в этом задании Кузнечик умеет выполнять команды «вперед 5», «назад 2».
Используя команды исполнителя Кузнечик, напишите алгоритм для получения из числа 33 числа 4 (без использования пульта).
Откройте окно исполнителя Кузнечик и проверьте алгоритм
Примечание: в этом задании Кузнечик умеет выполнять команды «вперед 3», «назад 4».
Ученики работают над текстом. Демонстрируют свои знания. Выполняют упражнения.
Информационные технологии копия 2
Основы алгоритмизации и технологии программирования
Понятие алгоритма и его свойства
Каждый из нас постоянно решает множество задач: как быстрее обраться на работу, как лучше спланировать дела текущего дня и многие другие. Некоторые задачи мы решаем автоматически, так как на протяжении многих лет привыкли к их выполнению, другие требуют длительного размышления над решением, но в любом случае, решение каждой задачи всегда делится на простые действия.
Любой алгоритм существует не сам по себе, а предназначен для определенного исполнителя (человека, робота, компьютера, языка программирования и т.д.). Свойством, характеризующим любого исполнителя, является то, что он умеет выполнять некоторые команды. Совокупность команд, которые данный исполнитель умеет выполнять, называется системой команд исполнителя. Алгоритм описывается в командах исполнителя, который будет его реализовывать. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.
Значение слова «алгоритм» очень схоже со значениями слов «рецепт», «метод», «процесс». Однако, в отличие от рецепта или процесса, алгоритм характеризуется следующими свойствами: дискретностью, массовостью, определенностью, результативностью, формальностью.
Дискретность (разрывность – противоположно непрерывности) – это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий, говорят: «Делится на шаги».
Массовость – применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных. Например, алгоритм решения квадратного уравнения в области действительных чисел должен содержать все возможные исходы решения, т.е., рассмотрев значения дискриминанта, алгоритм находит либо два различных корня уравнения, либо два равных, либо делает вывод о том, что действительных корней нет.
Определенность (детерминированность, точность) – свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов. Помните сказку про Ивана-царевича? «Шел Иван-царевич по дороге, дошел до развилки. Видит большой камень, на нем надпись: «Прямо пойдешь – голову потеряешь, направо пойдешь – жену найдешь, налево пойдешь – разбогатеешь. Стоит Иван и думает, что дальше делать». Таких инструкций алгоритм содержать не может.
Результативность – свойство, состоящее в том, что любой алгоритм должен завершаться за конечное (может быть очень большое) число шагов. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.
Формальность – это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции. Рассуждать «что, как и почему» должен разработчик алгоритма, а исполнитель формально (не думая) поочередно исполняет предложенные команды и получает необходимый результат.
Способы описания алгоритмов
Рассмотрим следующие способы описания алгоритма: словесное описание, псевдокод, блок-схема, программа.
Словесное описание представляет структуру алгоритма на естественном языке. Например, любой прибор бытовой техники (утюг, электропила, дрель и т.п.) имеет инструкцию по эксплуатации, т.е. словесное описание алгоритма, в соответствии которому данный прибор должен использоваться.
Никаких правил составления словесного описания не существует. Запись алгоритма осуществляется в произвольной форме на естественном, например, русском языке. Этот способ описания не имеет широкого распространения, так как строго не формализуем (под «формальным» понимается то, что описание абсолютно полное и учитывает все возможные ситуации, которые могут возникнуть в ходе решения); допускает неоднозначность толкования при описании некоторых действий; страдает многословностью.
Псевдокод – описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика.
Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.
Блок-схема – описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций. Этот способ имеет ряд преимуществ. Благодаря наглядности, он обеспечивает «читаемость» алгоритма и явно отображает порядок: выполнения отдельных команд. В блок-схеме каждой формальной конструкции соответствует определенная геометрическая фигура или связанная линиями совокупность фигур.
Рассмотрим некоторые основные конструкции, использующиеся для построения блок-схем (рис. 1).
(1) Блок, характеризующий начало/конец алгоритма (для подпрограмм – вызов/возврат);
(8) Блок – решение (проверка условия или условный блок);
(9) Блок, описывающий блок с параметром;
(10) Блок – границы цикла, описывающий циклические процессы типа: «цикл с предусловием», «цикл с постусловием»;
Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторый произвол при изображении команд. Вместе с тем она настолько достаточна, что позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования.
Программа – описание структуры алгоритма на языке алгоритмического программирования. Программа на языке декларативного программирования представляет собой совокупность описанных знаний и не содержит явного алгоритма исполнения.
Основные алгоритмические конструкции
Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся, циклические и рекурсивные.
Линейная алгоритмическая конструкция
Линейной называют алгоритмическую конструкцию, реализованную в виде последовательности действий (шагов), в которой каждое действие (шаг) алгоритма выполняется ровно один раз, причем после каждого i- гo действия (шага) выполняется (i+ 1)-е действие (шаг), если i-e действие – не конец алгоритма.
Опишем алгоритм сложения двух чисел на псевдокоде в виде блок-схемы (рис. 2).
Разветвляющаяся алгоритмическая конструкция
Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если – то) и полное (если – то – иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 3). Неполное ветвление предполагает наличие некоторых действий алгоритма только на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния (рис. 4).
Рассмотрим стандартный алгоритм поиска наибольшего (наименьшего) значения среди нескольких заданных. Основная идея алгоритма сводится к следующему: за наибольшее (наименьшее) принимаем значение любого из данных. Поочередно сравниваем оставшиеся данные с наибольшим (наименьшим). если окажется, что очередное значение входного данного больше (меньше) наибольшего (наименьшего), то наибольшему (наименьшему) присваиваем это значение. Таким образом, сравнив все входные данные, найдем наибольшее (наименьшее) среди них. Алгоритм использует неполное ветвление.
Заданы три числа. Найти значение наименьшего из них Заданные числа обозначим: а, b, с; результирующее наименьшее – min. На рис. 5 представлена блок-схема алгоритма решения данной задачи.
Алгоритмическая конструкция «Цикл»
Циклической (или циклом) называют алгоритмическую конструкцию, в кoтoрoй некая, идущая подряд группа действий (шагов) алгоритма может выполняться несколько раз, в зависимости от входных данных или условия задачи. Группа повторяющихся действий на каждом шагу цикла называется телом цикла. Любая циклическая конструкция содержит себе элементы ветвящейся алгоритмической конструкции.
Арифметический цикл
В арифметическом цикле число его шагов (повторений) однозначно определяется правилом изменения параметра, которое задается с помощью начального (N) и конечного (К) значений параметра и шагом (h) его изменения. Т.е., на первом шаге цикла значение параметра равно N, на втором – N + h, на третьем – N + 2h и т.д. На последнем шаге цикла значение параметра не больше К, но такое, что дальнейшее его изменение приведет к значению, большему, чем К.
Вывести 10 раз слово «Привет!».
Параметр цикла обозначим i, он будет отвечать за количество выведенных слов. При i=1 будет выведено первое слово, при i=2 будет выведено второе слова и т. д. Так как требуется вывести 10 слов, то последнее значение параметра i=10. В заданном примере требуется 10 раз повторить одно и то же действие: вывести слово «Привет!». Составим алгоритм, используя арифметический цикл, в котором правило изменения параметра i=1,10, 1. т. е. начальное значение параметра i=1; конечное значение i=10; шаг изменения h=1. На рис. 6 представлена блок-схема алгоритма решения данной задачи.
Цикл с предусловием
Количество шагов цикла заранее не определено и зависит от входных данных задачи. В данной циклической структуре сначала проверяется значение условного выражения (условие) перед выполнением очередного шага цикла. Если значение условного выражения истинно, исполняется тело цикла. После чего управление вновь передается проверке условия и т.д. Эти действия повторяются до тех пор, пока условное выражение не примет значение ложь. При первом же несоблюдении условия цикл завершается.
Блок-схема данной конструкции представлена на рис. 7 двумя способами: с помощью условного блока а и с помощью блока границы цикла б. Особенностью цикла с предусловием является то, что если изначально условное выражение ложно, то тело цикла не выполнится ни разу.
Цикл с постусловием
Как и в цикле с предусловием, в циклической конструкции с постусловием заранее не определено число повторений тела цикла, оно зависит от входных данных задачи. В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет выполняться до тех пор, пока значение условного выражения ложно. Как только оно становится истинным, выполнение команды прекращается. Блок-схема данной конструкции представлена на рис. 8 двумя способами: с помощью условного блока а и с помощью блока управления б.
Рекурсивный алгоритм
Рекурсивным называется алгоритм, организованный таким образом, что в процессе выполнения команд на каком-либо шаге он прямо или косвенно обращается сам к себе.
Простые типы данных: переменные и константы
Переменная – есть именованный объект (ячейка памяти), который может изменять свое значение. Имя переменной указывает на зн ачение, а способ ее хранения и адрес остаются скрытыми от программиста. Кроме имени и значения, переменная имеет тип, определяющий, какая информация находится в памяти. Тип переменной задает:
Объем памяти для каждого типа определяется таким образом, чтобы в него можно было поместить любое значение из допустимого диапазона значений данного типа. Например, тип «байт» может принимать значения от О до 255, что в двоичном коде (255(10)=11111111(2)) соответствует ячейке памяти длиной в 8 бит (или 1 байт).
В описанных выше алгоритмах (примеры 1-3) все данные хранятся в виде переменных. Например, инструкция «Ввод двух чисел а, b » означает введение пользователем значений двух переменных, а инструкция «К=К + 1» означает увеличение значения переменной К на единицу.
Если переменные присутствуют в программе, на протяжении всего времени ее работы – их называют статическими. Переменные, создающиеся и уничтожающиеся на разных этапах выполнения программы, называют динамическими.
Все остальные данные в программе, значения которых не изменяются на протяжении ее работы, называют константами или постоянными. Константы, как и переменные, имеют тип. Их можно указывать явно, например, в инструкции «К=К+1» 1 есть константа, или для удобства обозначать идентификаторами: pi=3,1415926536. Только значение pi нельзя изменить, так как это константа, а не переменная.
Структурированные данные и алгоритмы их обработки
Одномерный массив (шкаф ящиков в один ряд) предполагает наличие у каждого элемента только одного индекса. Примерами одномерных массивов служат арифметическая (аi) и геометрическая (bi) последовательности, определяющие конечные ряды чисел. Количество элементов массива называют размерностью. При определении одномерного массива его размерность записывается в круглых скобках, рядом с его именем. Например, если сказано: «задан массив A (10)», это означает, что даны элементы: a 1 , a 2 , …, a 10 . Рассмотрим алгоритмы обработки элементов одномерных массивов.
Ввод элементов одномерного массива осуществляется поэлементно, в порядке, необходимом для решения конкретной задачи. Обычно, когда требуется ввести весь массив, порядок ввода элементов не важен, и элементы вводятся в порядке возрастания их индексов. Алгоритм ввода элементов массива А(10) представлен на рис.9.
В заданном числовом массиве A(l0) найти наибольший элемент и его индекс, при условии, что такой элемент в массиве существует, и единственный.
Обозначим индекс наибольшего элемента т. Будем считать, что первый элемент массива является наибольшим (т = 1). Сравним поочередно наибольший с остальными элементами массива. Если оказывается, что текущий элемент массива а i (тот, c которым идет сравнение) больше выбранного нами наибольшего ат, то считаем его наибольшим (т=i) (рис.10).
Рассмотрим двумерный массив (шкаф с множеством ящиков, положение которых определяется двумя координатами – по горизонтали и по вертикали). В математике двумерный массив (таблица чисел) называется матрицей. Каждый ее элемент имеет два индекса а ij , первый индекс i определяет номер строки, в которой находится элемент (координата по горизонтали), а второй j – номер столбца (координата по вертикали). Двумерный массив характеризуется двумя размерностями N и М, определяющими число строк и столбцов соответственно (рис. 11).
Задана матрица символов (100х100), представляющая собой карту ночного неба; звездам на карте соответствует символы «*». Определить: сколько звезд на карте?
Алгоритм решения задачи достаточно прост, необходимо перебрать все элементы матрицы и посчитать, сколько среди них символов «*». Обозначим К переменную – счетчик. На рис 13. представлена блок-схема решения этой задачи.