Что называется системой физических величин
Системы единиц физических величин: понятие
В мире существовало и существует до сих пор множество различных систем измерения величин. Они служат для того, чтобы люди могли обмениваться различной информацией, например, при совершении сделок, назначении препаратов или разработке руководств к использованию техники. Для того чтобы не возникало путаницы, была разработана Интернациональная система измерения физических величин.
Что такое система измерения физических величин?
Такое понятие, как система единиц физических величин, или просто система СИ, часто может встретиться не только на школьных уроках физики и химии, но и в повседневной жизни. В современном мире люди как никогда нуждаются в том, чтобы определенная информация – например, время, вес, объем – была выражена наиболее объективно и структурировано. Именно для этого и была создана единая система измерений – совокупность официально принятых единиц измерений, рекомендуемых для использования в быту и науке.
Какие системы измерения существовали до появления системы СИ
Вам будет интересно: Античный Рим: история, культура, религия
Конечно, потребность в мерах существовала у человека всегда, однако, как правило, эти меры не были официальными, определялись через подручные материалы. А значит, не имели эталона и могли различаться от случая к случаю.
Ярким примером может служить принятая на Руси система мер длины. Пядь, локоть, аршин, сажень – все эти единицы изначально были привязаны к частям тела – ладони, предплечью, расстоянию между раскинутыми руками. Конечно, в результате конечные измерения были неточными. Впоследствии государство прилагало усилия, чтобы стандартизировать эту систему измерения величин, но она все равно оставалась неидеальной.
В других странах существовали свои системы измерения физических величин. Например, в Европе была распространена английская система мер – футы, дюймы, мили и др.
Зачем нужна система СИ?
В XVIII-XIX веках процесс глобализации стал активным. Все больше стран начали устанавливать международные контакты. Кроме того, своего апогея достигла научно-техническая революция. Ученые по всему миру не могли эффективно обмениваться результатами своих научных изысканий из-за того, что они пользовались разными системами измерения физических величин. Во многом из-за таких нарушений связей внутри мирового научного сообщества многие физические и химические законы «открывались» несколько раз разными учеными, что сильно тормозило развитие науки и техники.
Таким образом, сформировалась потребность в единой системе измерения физических единиц, которая бы не только позволила ученым по всему миру сверять результаты своих трудов, но и оптимизировала процесс мировой торговли.
История возникновения Международной системы измерения
Для того чтобы структурировать физические величины и измерение физических величин, система единиц, единая для всего мирового сообщества, стала необходима. Однако создать такую систему, которая бы отвечала всем требованиям и была наиболее объективной, – это действительно трудная задача. Основой будущей системы СИ стала метрическая система, которая получила свое распространение в XVIII веке после Великой французской революции.
Точкой отсчета, с которой началось развитие и совершенствование Интернациональной системы измерения физических величин, можно считать 22 июня 1799 года. Именно в этот день были утверждены первые эталоны – метр и килограмм. Они были выполнены из платины.
Несмотря на это, официально Международная система единиц была принята только в 1960 году на 1-й генеральной конференции по мерам и весам. В нее были включены 6 основных единиц измерения физических величин: секунда (время), метр (длина), килограмм (масса), кельвин (термодинамическая температура), ампер (сила тока), кандела (сила света).
В 1964 году к ним была добавлена седьмая величина – моль, которой измеряется количество вещества в химии.
Кроме того, существуют также производные единицы, которые могут быть выражены через основные с помощью простейших алгебраических действий.
Основные единицы измерения в системе СИ
Так как основные единицы системы физических величин должны были быть максимально объективными и не зависеть от внешних условий, таких как давление, температура, расстояние от экватора и другие, то к формулированию их определений и эталонов нужно было отнестись фундаментально.
Рассмотрим каждую из основных единиц системы измерения физических величин подробнее.
Приставки, принятые в системе СИ и что они означают
Для удобства использования основных единиц физических величин в системе СИ на практике был принят перечень универсальных приставок, с помощью которых образуются дробные и кратные единицы.
Производные единицы
Очевидно, что существует намного больше семи физических величин, а значит, нужны и единицы, в которых эти величины должны измеряться. Для каждой новой величины выводится новая единица, которая может быть выражена через основные с помощью простейших алгебраических действий, например деления или умножения.
Интересно, что, как правило, производные единицы называются в честь великих ученых или исторических лиц. К примеру, единица измерения работы – Джоуль или единица измерения индуктивности – Генри. Существует множество производных единиц – всего более двадцати.
Внесистемные единицы
Несмотря на широкое распространение и повсеместное применение единиц системы физических величин СИ, во многих отраслях все еще применяются на практике внесистемные единицы измерения. Например, в судоходстве – морская миля, в ювелирном деле – карат. В повседневной жизни нам известны такие внесистемные единицы, как сутки, процент, диоптрия, литр и многие другие.
Нужно помнить, что, несмотря на их привычность, при решении физических или химических задач внесистемные единицы нужно обязательно переводить в единицы измерения физических величин в системе СИ.
СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН
СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН — совокупность основных (независимых) и производных единиц физических величин (см.), отражающая существующие в природе связи между ними и образованная в соответствии с принятыми принципами. Часто систему единиц обозначают по начальным буквам её основных единиц, напр. МКС — метр (единица длины), килограмм (единица массы), секунда (единица времени); СГС — сантиметр (единица длины), грамм (единица массы), секунда (единица времени) и т.д. Наличие большого числа систем единиц создавало неудобства, усложняло технические расчёты, затрудняло изучение научных дисциплин, мешало развитию международных научно-технических связей. Введение СИ — Международной системы единиц (см.) — создало перспективу всеобщей универсальности (позволяющей отказаться от остальных систем и охватывающей все виды измерений в любой области науки), унифицированности (позволяющей использовать одни и те же единицы для различных однородных физ. величин, напр. джоуль — единица работы, механической энергии, электрической энергии, количества теплоты) и когерентности, т.е. согласованности основных единиц величин с производными. Единица физ. величины — конкретная (фиксированная) физ. величина, которой по определению присвоено числовое значение, равное единице. Разные единицы одной и той же величины различают по размеру: напр. сутки, час, минута, секунда (единицы времени) имеют различный размер (1 сут = 86400 с, 1 ч = 3600 с, 1 мин = 60 с).
Смотреть что такое «СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН» в других словарях:
система единиц физических величин — система единиц Совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Пример. Международная система единиц (СИ), принятая в 1960 г. XI ГКМВ и уточненная на… … Справочник технического переводчика
Система единиц физических величин — совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Источник: РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ СТАНДАРТИЗАЦИИ. ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ… … Официальная терминология
Система единиц физических величин — (система единиц) – совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами. [СН 528 80] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов
когерентная система единиц физических величин — когерентная система единиц Система единиц физических величин, состоящая из основных единиц и когерентных производных единиц. Примечание. Кратные и дольные единицы от системных единиц не входят в когерентную систему. [РМГ 29 99] EN coherent system … Справочник технического переводчика
Единица системы единиц физических величин производная — Производная единица системы единиц физических величин единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами или с основными и уже определенными производными. … … Официальная терминология
СИСТЕМА ЕДИНИЦ — физических величин, совокупность основных и производных единиц нек рой системы физ. величин, образованная в соответствии с принятыми принципами. С. е. строится на основе физ. теорий, отражающих существующую в природе взаимосвязь физ. величин. При … Физическая энциклопедия
Система единиц (измерений) — Совокупность основных и производных единиц измерений, образованная в соответствии с принятыми по договоренности правилами (принципами). Примечание. Термин «система единиц физических величин» не вполне корректен, так как известные системы единиц,… … Словарь-справочник терминов нормативно-технической документации
система единиц (измерений) — Совокупность основных и производных единиц измерений, образованная в соответствии с принятыми по договоренности правилами (принципами). Примечание Термин «система единиц физических величин» не вполне корректен, так как известные системы … Справочник технического переводчика
СИСТЕМА ЕДИНИЦ — совокупность основных (независимых) и производных единиц физических величин, отражающая существующие в природе взаимосвязи этих величин. При определении единиц системы подбирается такая последовательность физических соотношений, в которой каждое… … Большой Энциклопедический словарь
СИСТЕМА ЕДИНИЦ — СИСТЕМА ЕДИНИЦ, совокупность основных (независимых) и производных единиц физических величин, отражающая взаимосвязи этих величин. С 1981 применяется Международная система единиц (СИ); в физике и астрономии иногда используют СГС систему единиц и… … Современная энциклопедия
Мокров Ю. Метрология, стандартизация, сертификация
ОГЛАВЛЕНИЕ
Глава 2. Системы единиц физических величин
2.1. Основные понятия
Многообразие единиц физических величин на определенной ступени развития общества стало тормозить экономические, торговые и научные связи. Даже отдельные государства и их административные области для одних и тех же величин вводили свои единицы. В разных областях науки и техники появлялись свои, специфические единицы, удобные только именно для этой отрасли.
В связи с этим возникла тенденция к унификации единиц физических величин, необходимость в системах единиц, которые охватывали бы единицы величин как можно больших разделов науки и техники. Ниже приводятся основные понятия, связанные с единицами физических величин и их системами.
Система единиц физических величин — совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Например, международная система единиц (СИ).
Основная единица системы — единица основной физической величины в данной системе единиц. Основные единицы могут выбираться произвольно, поэтому для одной и той же системы величин может быть образовано несколько систем единиц.
Производная единица системы — единица производной физической величины системы единиц, образованная в соответствии уравнением, связывающим ее с основными единицами или с основными и уже определенными производными.
Системная и внесистемная единицы – единицы, входящие и не входящие в принятые системы единиц. Например, единицы, не входящие в СИ, разделяют на следующие группы:
2.2 Метрическая система мер
При построении систем единиц физических величин выделяют два этапа: 1 этап – выбор основных единиц; 2 этап – образование производных единиц.
Последовательность расположения производных единиц должна удовлетворять при этом следующим условиям:
Основным принципом при построении системы единиц является удобство использования единиц в науке, промышленности, торговли. При этом руководствуются рядом правил: простотой образования производных единиц, высокой точностью воспроизведения основных и производных единиц и близостью их размеров к размерам физических величин, чаще всего встречающихся в практической деятельности. Кроме того, число основных единиц всегда стараются сделать минимальным.
Система Гаусса. В качестве основных единиц в ней выбраны миллиметр, миллиграмм, секунда и построена система магнитных величин. Система получила название абсолютной. В 1851 г. Вебер распространил ее на область электрических величин. В настоящее время представляет лишь исторический интерес, т.к. единицы имеют слишком малый размер. Однако открытый Гауссом принцип лежит в основе построения современных систем единиц — это деление на основные и производные единицы.
Система СГС была принята в 1881 г. с основными единицами сантиметр, грамм, секунда. Эта система удобна для физических исследований. На основе ее возникло семь систем электрических и магнитных величин. В настоящее время система СГС используется в теоретических разделах физики и астрономии.
Естественная система единиц основана на физических константах. Первая такая система была предложена в 1906 г. Планком. В качестве основных единиц были выбраны: скорость света в вакууме, гравитационная постоянная, постоянные Больцмана и Планка. Преимущество этих систем – при построении физических теорий они придают физическим законам более простой вид и некоторые формулы освобождаются от числовых коэффициентов. Однако единицы физических величин имеют в них размер, неудобный для практики. Например, единица длины равна в этой системе 4,03 × 10-35 м. Кроме того, еще не достигнута такая точность измерения выбранных универсальных констант, чтобы можно было установить все производные единицы.
Относительные и логарифмические величины широко распространены в науке и технике, т.к. они характеризуют состав и свойства материалов, отношение энергетических величин, например, относительную плотность, относительную диэлектри-ческую проницаемость, усиление и ослабление мощности.
Относительная величина – это безразмерное отношение физической величины к одноименной физической величине, принимаемой за исходную. Например, атомные и молекулярные массы химических элементов по отношению к 1/12 массы атома углерода-12. Относительные величины могут выражаться в безразмерных единицах, в процентах, промиле (отношение равно 10-3), в миллионных долях.
Логарифмическая величина представляет собой логарифм безразмерного отношения двух одноименных физических величин. Они применяются, например, для выражения уровня звукового давления, усиления, ослабления и т.п.
Единицей логарифмической величины является бел (Б): 1 Б = lg (P2 / P1) при Р2 = 10Р1, где Р2 и Р1 – одноименные величины мощности, энергии и т.п. Для отношения двух одноименных величин, связанных с силой (напряжения, давления и т.п.) бел определяется по формуле:
1Б = 2 lg (F2/F1) при F2 = 100,5 F1.
Дольной единицей от бела является децибел, равный 0,1 Б.
2.6 Международная система единиц (СИ)
Развитие науки и техники все настойчивее требовало унификации единиц измерений. Требовалась единая система единиц, удобная для практического применения и охватывающая различные области измерений. Кроме того, она должна была быть когерентной. Так как метрическая система мер широко использовалась в Европе с начала 19 века, то она была взята за основу при переходе к единой международной системе единиц.
В 1960 г. ХI Генеральная конференция по мерам и весам утвердила Международную систему единиц физических величин (русское обозначение СИ, международное SI) на основе шести основных единиц. Было принято решение:
наименование «Международная система единиц»;
В СССР Международная система (СИ) была введена в действие ГОСТ 8.417-81. По мере дальнейшего развития СИ из нее был исключен класс дополнительных единиц, введено новое определение метра и введен ряд других изменений. В настоящее время в РФ действует межгосударственный стандарт ГОСТ 8.417-2002, который устанавливает единицы физических величин, применяемых в стране. В стандарте указано, что подлежат обязательному применению единицы СИ, а также десятичные кратные и дольные этих единиц.
Кроме того, допускается применять некоторые единицы, не входящие в СИ, и их дольные и кратные единицы. В стандарте указаны также внесистемные единицы и единицы относительных величин.
Основные единицы СИ представлены в таблице.
Производные единицы СИ образуются по правилам образования когерентных производных единиц (пример см. выше). Приведены примеры таких единиц и производных единиц, имеющих специальные наименования и обозначения. 21 производной единице дали наименования и обозначения по именам ученых, например, герц, ньютон, паскаль, беккерель.
В отдельном разделе стандарта приведены единицы, не входящие в СИ. К ним относятся:
Системы единиц физических величин
Система единиц — это совокупность основных и производных единиц, относящихся к некоторой системе величин, построенная в соответствии с принятыми принципами.
Исторически первой системой единиц физических величин была принятая в 1791 г. Национальным собранием Франции метрическая система мер.
Она не являлась еще системой единиц в современном понимании, а включала в себя единицы длин, площадей, объемов, вместимостей и веса, в основу которых были положены две единицы: метр и килограмм. В 1832 г. немецкий математик К.Гаусс предложил методику построения системы единиц как совокупности основных и производных.
За основу были приняты три независимые друг от друга единицы: миллиметр — единица длины; миллиграмм — единица массы; секунда — единица времени. Все остальные единицы можно было определить с помощью этих трех. Такую систему единиц, связанных определенным образом с тремя основными единицами длины, массы и времени, Гаусс назвал абсолютной системой.
В дальнейшем с развитием науки и техники появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, базирующихся на метрической системе мер, но отличающихся друг от друга основными единицами.
Система СГС. Система единиц физических величин СГС, в которой основными единицами являются с антиметр как единица длины, грамм как единица массы и секунда как единица времени, была принята в 1881 г. Первым международным конгрессом электриков. Конгресс основывался на принципах, предложенных Гауссом, и ввел наименование для двух важнейших производных единиц: дина — для измерения силы и эрг — работы. Для измерения мощности в системе СГС применяется эрг в секунду, кинетической вязкости — стокс, динамической — пуаз.
Давление в системе СГС измеряют в динах на квадратный сантиметр. Эта единица в прошлом называлась бар, однако в связи с переименованием в бар единицы давления, равной 105 Н/м2, для единиц давления СГС иногда применяют наименование барий и одновременно микробар (так как она равна одной миллионной нового бара).
Исторически сложилось так, что для них к настоящему времени существует семь видов системы СГС для электрических и магнитных величин, из которых наиболее распространены три:
Система МКГСС. В период установления метрической системы мер, в конце XVIII в., килограмм был принят как единица веса. Применение килограмма как единицы веса, а в последующем как единицы силы вообще, привело в конце XIX в. к формированию системы единиц физических величин с тремя основными единицами: метр — единица длины, килограмм сила — единица силы и секунда — единица времени (система МКГС).
Килограммсила (кгс) — это сила, которая сообщает массе, равной массе международного прототипа килограмма, ускорение 9,80665 м/с2 (нормальное ускорение свободного падения).
Эта система единиц широко распространилась в механике и технике, получив неофициальное наименование «техническая». Одной из причин распространения системы МКГСС явилось удобство выражения сил в единицах веса и удобный размер основной единицы силы — килограммсилы.
За единицу массы в системе МКГСС принята масса тела, получающего ускорение 1 м/с2 под действием приложенной силы 1 кгс. Эта единица (килограмм сила секунда в квадрате на метр) иногда называется технической единицей массы или инертной, хотя оба эти наименования не установлены ни в одной из рекомендаций на единицы физических величин. Единица массы МКГСС — 1 кгс с2/м 9,81 кг — единицы массы системы СИ. Широко при менялись в технике единицы работы и энергии МКГСС — кило граммсиламетр (кгсм) и единица мощности — килограммсила метр в секунду (кгс м/с).
Система МТС. В системе единиц МТС основными единицами являются: единица длины — метр, единица массы — тонна и единица времени — секунда. Эта система единиц впервые была установлена в 1919 г. во Франции, где была принята в законоположении о единицах измерений. В 1927—1933 гг. система МТС была рекомендована советскими стандартами на механические единицы.
Выбор тонны в качестве основной единицы массы казался удачным, так как достигалось соответствие между единицами длины и объема, с одной стороны, и единицей массы — с другой (с точностью, достаточной для большинства технических расчетов, 1 т соответствует массе 1 м3 воды). Кроме того, единица работы и энергии в этой системе (килоджоуль) и единица мощности (киловатт) совпадали с соответствующими кратными практическими электрическими единицами.
В системе МТС единицей силы служит с тен (сн), равный силе, сообщающей массе 1 т ускорение 1 м/с2, единицей давления — пьеза — 1 сн/м2. Абсолютная практическая система электрических единиц. Эта система была установлена в 1881 г. первым Международным конгрессом электриков в качестве производной от системы СГСМ и предназначалась для практических измерений в связи с тем, что электрические и магнитные единицы системы СГСМ оказались неудобными для практики (одни слишком велики, другие слишком малы).
В числе первых практических электрических единиц были приняты:
Второй Международный конгресс электриков в 1889 г. включил в список практических электрических единиц еще три:
В дальнейшем решениями МЭК и ГКМВ были установлены другие практические электрические и магнитные единицы (например, вебер, сименс, тесла). Международные электрические единицы, отличавшиеся от единиц абсолютной практической системы электрических единиц тем, что они базировались не на теоретическом определении единиц, а на их эталонах, были приняты в 1893 г. в Чикаго Третьим международным конгрессом электриков.
Конгресс установил три основные международные электрические единицы: международный ом, для определения которого использовали ртутный эталон, международный ампер, определяемый с помощью серебряного вольтметра, и международный вольт, определяемый по элементу Кларка. Остальные электрические единицы (международный кулон, фарад и др.) были определены как производные от них.
Завершением работы по установлению международных электрических единиц и четкому разграничению абсолютных практических единиц и международных явились решения Международной Лондонской конференции электриков в 1908 г. В качестве единиц, которые с достаточным приближением при практических измерениях и для законодательных целей воспроизводят электрические единицы, конференция рекомендовала принять международный ом, международный ампер, международный вольт и международный ватт.
Система МКСА. Основы этой системы были предположены в 1901 г. итальянским ученым Дж.Джорджи, поэтому система имеет и второе наименование, принятое в 1958 г. МЭК — «система Джорджи», но не получившая, однако, распространения. Основными единицами системы МКСА являются метр, килограмм, секунда и ампер. В системе МКСА сила измеряется в ньютонах, работа и энергия — джоулях, мощность — ваттах.
В системе МКСА механические единицы полностью согласованы с единицами абсолютной практической системы электрических и магнитных единиц — ампером, вольтом, омом, кулоном и др. Система МКСА является частью Международной системы единиц СИ.
Внесистемные единицы.
Несмотря на определенные преимущества, которые дает применение единиц, определяемых той или иной системой, до настоящего времени широко распространены различные единицы, не укладывающиеся ни в одну из систем. Число так называемых внесистемных единиц довольно велико, и от многих из них нельзя отказаться ввиду удобства их применения в определенных областях, другие из них сохранились в силу исторических традиций.
Так, исторически возникла единица давления — атмосфера, равная давлению, производимому силой 1 кгс на площадь 1 см2, ибо атмосфера близка по размеру к среднему давлению атмосферного воздуха на уровне моря.