Что называется сечением многогранника плоскостью

Первый урок на построение сечений многогранников

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника — любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника — это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Что называется сечением многогранника плоскостью

Основные действия при построении сечений

1. Как проверить: построено сечение или нетОпределение сеченияЭто должен быть многоугольник, стороны которого принадлежат граням многогранника2. До начала работы определить: можно ли по данным задачи построить сечениеСпособы задания плоскостиМожно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.3. В плоскости какой-то грани есть две точки секущей плоскостиЕсли две точки принадлежат плоскости, то вся прямая принадлежит плоскостиЧерез эти точки провести прямую4. В одной из параллельных граней есть сторона сечения, а в другой — точка сеченияСвойство параллельных плоскостейЧерез эту точку провести прямую, параллельную данной5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой граниПризнак параллельности прямой и плоскости. Свойство параллельных плоскостейПостроить прямую пересечения плоскостей, параллельную данной прямой6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежнойАксиомы стереометрииСекущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Что называется сечением многогранника плоскостью

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Что называется сечением многогранника плоскостью

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Что называется сечением многогранника плоскостью

Решение. Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L — нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N — середины ребер SA и SB соответственно (рис. 4).

Что называется сечением многогранника плоскостью

1. В какой грани можно построить стороны сечения?
[ASB, ASC]
2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.
[ABC]
Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.
[ASB]
Находим линию пересечения граней ABC и ASB.
[AB]
Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что называется сечением многогранника плоскостью

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN — искомое сечение.
Способ II. Выбираем точку N (рис. 6).

Что называется сечением многогранника плоскостью
Определяем грани, в которых лежат точка N и прямая KL.
[SBC и SAC]
Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP — искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4. Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Что называется сечением многогранника плоскостью

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

Что называется сечением многогранника плоскостью

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Что называется сечением многогранника плоскостью

Ответ: см. рисунок 10.

Что называется сечением многогранника плоскостью

Задание на дом

Задача. Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

Источник

Методы построения сечений многогранников

Разделы: Математика

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

Рассмотрим подробнее учебники Л.С, Атанасяна и Погорелова А.В.

В учебнике Л.С. Атанасяна на тему “Построение сечений многогранников” выделено два часа. В 10 классе в теме “Параллельность прямых и плоскостей” после изучения тетраэдра и параллелепипеда отводится один час на изложение параграфа “Задачи на построение сечений”. Рассматриваются сечения тетраэдра и параллелепипеда. И тема “Параллельность прямых и плоскостей” завершается решением задач на одном или двух часах (всего задач на построение сечений в учебнике восемь).

В учебнике Погорелова А.В. на построение сечений отводится около трех часов в главе “Многогранники”: один – на изучение темы “Изображение призмы и построение ее сечений”, второй – на изучение темы “Построение пирамиды и ее плоских сечений” и третий – на решение задач. В списке задач, приведенных после темы, задач на сечение насчитывается всего около десяти.

Мы предлагаем систему уроков по теме “Построение сечений многогранников” для учебника Погорелова А.В.

СТЕРЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ И МЕТОДИКА ИХ ИСПОЛЬЗОВАНИЯ НА УРОКАХ В 10-11 КЛАССАХ.

(система уроков и факультативных занятий по теме “Построение сечений многогранников”)

Тема урока: “Построение сечений многогранников”.

Цель урока: ознакомление с методами построений сечений многогранников.

Источник

ИНТЕРАКТИВНЫЕ МОДЕЛИ В ОБУЧЕНИИ

Пример: модели МК в электронном учебнике

Что называется сечением многогранника плоскостью

Сечения многогранников

ТЕОРИЯ

В этом разделе мы рассмотрим методы построения сечений многогранников. Плоскость сечения, как правило, будет задаваться тремя точками – K, L, M. Сложность такой задачи во многом определяется расположением точек, задающих плоскость сечения.

Пример 1

Самый простой случай – когда точки лежат на трёх смежных рёбрах пирамиды – не нуждается в разборе.

Основной метод, который используется при построении сечений, называется методом следов.

Следом называется прямая, по которой плоскость сечения пересекает плоскость любой из граней многогранника. Если такой след найден, то точки его пересечения с соответствующими рёбрами многогранника и будут вершинами искомого сечения.

Пример 2

Пусть теперь точки K и M лежат на боковых рёбрах пирамиды, а точка L – на стороне основания.

Пример 3

Использованный на первом шаге построения приём часто называют методом вспомогательных плоскостей. Рассмотрим ещё один пример, где он используется.

Пример 4

Рассмотрим теперь самый общий случай, когда все три точки K, L и M лежат на гранях пирамиды.

С помощью метода вспомогательных плоскостей можно строить сечения, «не выходя» за пределы многогранника. Вернёмся в связи с этим к примеру 2.

Пример 2’

Точки K и M лежат на боковых рёбрах пирамиды, а точка L – на стороне основания. Построим сечение, «не выходя» за пределы многогранника.

Можно использовать ту же самую идею иначе. Проведём в начале анализ построенного сечения – т.е. начнём с конца. Допустим, что по точкам K, L и M построено сечение KLMN.

Обозначим через F точку пересечения диагоналей четырёхугольника KLMN. Проведём прямую CF и обозначим через F1 точку её пересечения с гранью SAB. С другой стороны, точка F1 совпадает с точкой пересечения прямых KB и MA, исходя из чего её и можно построить.

Использованный в этом решении приём называют методом внутреннего проектирования. Построим с его помощью сечение из примера 4, когда все три точки лежат на гранях пирамиды.

Пример 3’

Точки K, L и M лежат на гранях пирамиды. Построим сечение, «не выходя» за пределы многогранника.

Допустим, что сечение уже построено.

Пусть плоскость сечения пересекает ребро CB в точке P. Обозначим через F точку пересечения KM и LP. Построим центральные проекции точек K, F и M из точки C на плоскость SAB и обозначим их K1, F1 и M1. Точки K1 и M1 легко находятся, а точку F1 можно получить как точку пересечения K1M1 и LB.

Что называется сечением многогранника плоскостью

УПРАЖНЕНИЯ

Более сложные упражнения помечены звёздочкой.

1. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M (см. модели).

Что называется сечением многогранника плоскостью
a
Что называется сечением многогранника плоскостью
b
Что называется сечением многогранника плоскостью
c
Что называется сечением многогранника плоскостью
d

2. Постройте сечение куба плоскостью, проходящей через точки K, L и M (см. модели).

Что называется сечением многогранника плоскостью
a
Что называется сечением многогранника плоскостью
b
Что называется сечением многогранника плоскостью
c
Что называется сечением многогранника плоскостью
d
Что называется сечением многогранника плоскостью
e

3. На рёбрах пирамиды SABC отмечены точки K, L и M. Постройте:

Что называется сечением многогранника плоскостью
(a) прямую, по которой пересекаются плоскости CSK и MLA;
Что называется сечением многогранника плоскостью
(b) точку пересечения плоскостей ACM, CSK и ASL;
Что называется сечением многогранника плоскостью
(c) точку пересечения плоскостей AML, CKM и SKL.

4*. На рёбрах пирамиды SABC отмечены точки K, L, M, P, N и Q. Постройте:

Что называется сечением многогранника плоскостью
(a) прямую, по которой пересекаются плоскости KLM и PNQ;
Что называется сечением многогранника плоскостью
(b) точку пересечения плоскостей ALM, CNP и SKQ.

5*. На ребре AB треугольной пирамиды SABC отмечена точка K. Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной BC и SA.

6*. На рёбрах AB и CS треугольной пирамиды SABC отмечены точки K и M. Постройте сечение пирамиды плоскостью, проходящей через точки K и M и параллельной AS.

7*. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M, лежащих в плоскостях её боковых граней (но не на самих гранях!).

8*. На плоскости проведены три луча с общим началом – a, b и с – и отмечены три точки – A, B и C. Постройте треугольник, вершины которого лежат на этих лучах, а стороны проходят через точки A, B и C.

Источник

Геометрия. 11 класс

Конспект урока

Геометрия, 11 класс

Урок №18. Сечения многогранников

Перечень вопросов, рассматриваемых в теме:

Решение задач, сводящихся к доказательству, связанному с построением сечения многогранника

Построение сечения многогранников

Решение задач на нахождение площадей сечений многогранников

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия. 10–11 классы : учеб.для общеобразоват. организаций : базовый и углубл. уровни – М.: Просвещение, 2014. – 255, сс. 121-126.

Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб.для общеобразоват. учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 178-196.

Потоскуев Е.В., Звавич Л.И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 5-30.

Открытые электронные ресурс:

Теоретический материал для самостоятельного изучения

Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Определение: две прямые параллельны, если они лежат в одной плоскости и не пересекаются. Если через две прямые нельзя провести одну плоскость, то такие прямые скрещиваются.

Теорема о параллельности трех прямых: если a∥b, b∥c, то и a∥c. Определение: прямая и плоскость параллельны, если они не имеют общих точек. Признак параллельности прямой и плоскости: прямая, не лежащая в плоскости, параллельна этой плоскости, если она параллельна некоторой прямой из этой плоскости.

Определение: две плоскости параллельны, если они не имеют общих точек.

Признак параллельности двух плоскостей: если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости параллельны.

Если две плоскости пересекаются, то их линия пересечения — прямая.

Если две параллельные плоскости пересечены третьей, то их линии пересечения параллельны (см. рис.)

Если плоскости α и β пересекаются по прямой a, а плоскости β и γ пересекаются по прямой b, причем a∥b, то плоскости α и γ пересекутся по прямой c∥a∥b.

Следом называется прямая, по которой плоскость сечения пересекает плоскость любой из граней многогранника.

Примеры и разбор решения заданий тренировочного модуля

№1 SABCD – четырехугольная пирамида, в основании которой лежит квадрат ABCD, а две боковые грани SAB и SAD представляют собой прямоугольные треугольники с прямым углом ∠A. Найдите площадь сечения пирамиды плоскостью α, если SA=AB=a.

Что называется сечением многогранника плоскостью

сначала построим сечение по условию задачи.

1)Пусть AC∩BD=O. Две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Заметим, что т.к. ∠SAB=∠SAD=90∘⇒SA⊥(ABC). Проведем в плоскости SAC прямую OK∥SC. Т.к. O – середина AC, то по теореме Фалеса K – середина SA. Через точку K в плоскости SAB проведем KM∥SB (следовательно, M – середина AB). Таким образом, плоскость, проходящая через прямые OK и KM, и будет искомой плоскостью. Необходимо найти сечение пирамиды этой плоскостью. Соединив точки O и M, получим прямую MN. Т.к. α∥(SBC),то α пересечет плоскость SCD по прямой NP∥SC (если NP∩SC≠∅, то α∩(SBC)≠∅, что невозможно ввиду их параллельности). Таким образом, KMNP – искомое сечение, причем KP∥AD∥MN⇒ это трапеция.

Что называется сечением многогранника плоскостью2)Т.к. все точки K,M,N,P – середины отрезков SA,AB,CD,SD соответственно, то: а) MN=AD=a б) KP=1/2AD=a/2 в) KM=1/2SB=a 2/2 Заметим, что по теореме о трех перпендикулярах SB⊥BC⇒KM⊥MN. Таким образом, KMNP – прямоугольная трапеция. SKMNP=(KP+MN)* KM/ 2 =3 Что называется сечением многогранника плоскостьюa 2 /8

Ответ:3 Что называется сечением многогранника плоскостьюa 2 /8

Что называется сечением многогранника плоскостью

боковая грань прямой призмы является прямоугольником.

Площадь каждой боковой грани равна произведению высоты призмы на сторону основания.

Что называется сечением многогранника плоскостью

Что называется сечением многогранника плоскостью

Что называется сечением многогранника плоскостью

То есть большая боковая грань содержит большую сторону основания.

По условию Что называется сечением многогранника плоскостью=120°, – тупой, а поскольку напротив большей стороны лежит больший угол, то большей стороной основания будет сторона АС. Вычислим длину стороны АС по теореме косинусов.

Что называется сечением многогранника плоскостью

Что называется сечением многогранника плоскостью

Получим, что длина стороны АС=7см.

Зная большую сторону основания и площадь наибольшей боковой грани призмы, длину высоты призмы вычислить нетрудно.

Получим, что длина высоты призмы равна Что называется сечением многогранника плоскостью.

Найдем площадь основания, а оно равно площади сечения, по формуле Что называется сечением многогранника плоскостью.

Мы воспользуемся второй формулой. Получим, что площадь основания равна Что называется сечением многогранника плоскостью.

Ответ: 15 Что называется сечением многогранника плоскостью/4 см 2

№3 На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ:QB=1:2. Точка P — середина ребра AS.

Найдите площадь сечения DPQ, если площадь сечения DSB равна 6.

Что называется сечением многогранника плоскостью

пусть сторона основания пирамиды равна 3а, а высота пирамиды равна h. Тогда площадь сечения DSB равна

Что называется сечением многогранника плоскостьюЧто называется сечением многогранника плоскостьюS=BD*SO/2= 3 =6

Площадь сечения DPQ равна

Что называется сечением многогранника плоскостью

Ответ: Что называется сечением многогранника плоскостью

Дана правильная треугольная пирамида SABC с вершиной S. Через середину ребра AC и точки пересечения медиан граней ASB и CSB проведена плоскость. Найдите площадь сечения пирамиды этой плоскостью, если AB=21,AS=12 Что называется сечением многогранника плоскостью.

Что называется сечением многогранника плоскостью

пусть LK∩SO=H. Тогда по теореме о трех перпендикулярах HK⊥AC как наклонная (HO⊥(ABC),OK⊥AC как проекция). Следовательно, и LK⊥AC.

Что называется сечением многогранника плоскостьюЧто называется сечением многогранника плоскостьюЧто называется сечением многогранника плоскостьюТогда SALC=AC⋅LK/2 Рассмотрим △SKB: BK=AB⋅ /2=21 /2⇒cosB=7 /12 Что называется сечением многогранника плоскостью.

Тогда по теореме косинусов для △KLB: KL 2 =729/4⇒KL=27/2

Дана правильная четырехугольная призма ABCDA1B1C1D1. На ребре AA1 отмечена точка K так, что AK : KA1 = 1 : 2. Плоскость α проходит через точки B и K параллельно прямой AC. Эта плоскость пересекает ребро DD1 в точке M, АВ=4, АА1=6. Найдите площадь сечения.

Что называется сечением многогранника плоскостью

По теореме о трех перпендикулярах прямые BM и AC перпендикулярны, а значит, прямые BM и KL перпендикулярны. Площадь четырехугольника, диагонали которого взаимно Что называется сечением многогранника плоскостьюперпендикулярны, равна половине произведения диагоналей. Найдем их: KL=AC=4 как диагональ квадрата, лежащего в основании призмы, Что называется сечением многогранника плоскостьютогда

по теореме Пифагора.

Что называется сечением многогранника плоскостью

Ответ: 8Что называется сечением многогранника плоскостью

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *