Что называется рекристаллизацией наклепанного металла
Рекристаллизация металла
Нагревание металла до определённой температуры приводит к изменениям в его физическом состоянии. Вначале наблюдается пластическая деформация. Дальнейший нагрев приводит к ослаблению и разрушению кристаллической решётки. На конечном этапе в структуре наблюдается два процесса: возврат и рекристаллизация.
Второй процесс для каждого из материалов происходит при строго индивидуальных условиях. Рекристаллизация металлов происходит при определённой температуре и приводит к изменению физических и механических свойств.
Описание процесса
Рекристаллизация характеризуется следующими показателями:
При постепенном повышении температуры наступает момент,когда начинается разрушение прочных кристаллических связей. Температура, при которой он начинается, называется температурный порог рекристаллизации. Этот показатель во многом зависит от чистоты материала, то есть количества имеющихся добавок и примесей. Например, для алюминия этот порог равен 100 °С, для железа обладающего нормальной технической чистотой он равен 450 °С. Для меди она составляет 270 °С. В теории металловедения получена однозначная зависимость, которая связывает абсолютную температуру порога рекристаллизации и температуру плавления. Эта температура справедлива для всех металлов и сплавов.Теория описания этого показателя полностью подтверждается на практике.
Было установлено, что температура начала кристаллизации связана с температурой плавления через определённый коэффициент. Он имеет свою величину для различных материалов. В частности принято считать, что этот коэффициент равен:
Более точные значения для каждого материала можно найти в справочной литературе по металловедению.
В зависимости от химических и физических свойств и условий протекания процесса зависит скорость рекристаллизации.Она изменяется при изменении состава металла, давления или механического воздействия на образец. Скорость влияет на рекристаллизационные процессы, конечный результат преобразований.Очень важным является возможность регулирования скорости этого превращения. Например, при производстве так называемой трансформаторной стали необходимо обеспечивать условия формирования крупных кристаллов, которые будут ориентированы в одном направлении. Эта задача решается с помощью соответствующих добавок. Такими добавками служат сера и марганец. Эти добавки создают соответствующий катализ для получения материала с необходимыми физическими и механическими характеристиками.
В результате применения катализаторов, создания определённых условий (температуры, давления) начинается собирательный процесс зёрен необходимого размера и формы с их строгой ориентацией, что позволяет придать металлу требуемые свойства.
Стадии рекристаллизации
Для лучшего понимания протекания рекристаллизации его разбивают на несколько стадий. Первая стадия (рекристаллизация первичная) сводится к образованию так называемых центров рекристаллизации. На этой стадии рекристаллизации происходит формирование новых зёрен. Основной особенностью этих зёрен является их неповреждённая решётка. Около старых зёрен формируются новые с искажённой решёткой. При повышении температуры происходит их постепенное численное увеличение. Итогом таких преобразований становится формирование всё большего числа новых зёрен,которые становятся доминантными. Старых зёрен не остаётся вовсе.Основной движущей силой этой стадии является энергия, которая собрана в деформированном (наклёпанном) металле. Наблюдается стремление системы прийти к состоянию устойчивого равновесия с доминированием неискажённой кристаллической решёткой.
Первичная рекристаллизация называется динамической.Это связано с тем, что она происходит непосредственно при горячей пластической деформации нагретого металла. Происходит многократное чередование циклов первичной (динамической) рекристаллизации с циклами спонтанного повышения плотности дислокации новых образований (зарождение новых зёрен). Скорость протекания этой стадии зависит от температуры деформации. Если температура достигла величины, которая значительно превышает температурный порог рекристаллизации, процесс в первичной стадии может завершиться в течение нескольких секунд.
На второй стадии происходит рост количества новых зёрен. Происходит ещё один процесс так называемая собирательная рекристаллизация. Процесс протекает благодаря внутренней энергии самих зёрен. Зёрна различной величины аккумулируется энергия, которая изменяется по величине. Мелкие зёрна обладают большей поверхностью раздела. Поэтому на этой поверхности скапливается большая энергия. Увеличение размера зерна приводит к уменьшению площади таких поверхностей, следовательно, к меньшей поверхностной энергии. Вторичная рекристаллизация может стимулироваться при добавлении различных химических соединений. Например, для ускорения этого процесса применяют дисперсионный сульфид марганца.
При превышении температуры кристаллизации происходит уменьшение размера зёрен. Это вызвано быстрым ростом числа так называемых центров вторичной кристаллизации.При повышенных температурах возникает серьёзная конкуренция между вторичной и собирательной кристаллизацией. Это приводит к укрупнению зёрен и росту времени выдержки. В этот момент наблюдается эффект предварительной деформации до 10% от исходного состояния. При таком показателе деформация считается критической. Она считается крайне негативной перед процессом последующего обжига. Этот процесс необходим для получения стали с заданными свойствами. Он проводится при различных температурах в зависимости от состава обрабатываемого материала. Например, для проведения обжига:
Отдельно выделяют метадинамическую рекристаллизацию. Она протекает после последовательной горячей пластической деформации. Происходит рост новых зёрен, при динамическом процессе, протекающем между статической рекристаллизацией и динамической. Образуются готовые центры новых кристаллов, которые успеваю полностью сформироваться на этапе постепенного охлаждения металла.
Эти процессы являются очень важными для формирования целостной микроструктуры готовых изделий из металлов или сплавов. Отслеживание этапов рекристаллизации (первичной, собирательной и вторичной) необходимо для получения металлов и сплавов с заданными свойствами. Это приводит к следующим эффектам:
Материалы, внутри которых были образованы мелкие зёрна, обладают повышенной прочностью и вязкостью. Для отдельных видов стали необходимо наоборот имеет крупные зёрна. Таким материалом является трансформаторная сталь или техническое железо. Наличие крупных зёрен придаёт этим металлам высокие магнитные свойства, которые необходимы для их дальнейшего применения.
Наклеп и рекристаллизация
Как следует из диаграмм растяжения, при деформации сталей при комнатной температуре предел текучести увеличивается с ростом деформации, то есть материал в этих условиях упрочняется.
Упрочнение – изменение структуры и свойств металлического материала, вызванное пластической деформацией.
Наибольшую сопротивляемость пластическому деформированию должен оказывать металл с очень малой плотностью дислокаций r. По мере увеличения плотности дислокаций r сопротивление пластическому деформированию уменьшается (рис. 3.8).
Рис. 3.8. Зависимость сопротивления деформированию от плотности дислокаций
Это происходит до достижения некоторого критического значения плотности дислокаций rкр, когда начинается взаимодействие силовых полей, окружающих дислокации, что и вызывает увеличение сопротивления пластическому деформированию.
Следовательно, увеличение сопротивления пластическому деформированию можно получить двумя путями: наклепом металла, т. е. прямым повышением плотности дислокаций или доведением плотности дислокаций до очень малого значения.
Наклепом называется упрочнение металла при холодной пластической деформации. В результате наклепа прочность (σВ, σ0,2, твердость и др.) повышается, а пластичность и ударная вязкость (δ, ψ, КСU) уменьшаются. Упрочнение возникает вследствие увеличения числа дефектов кристаллической структуры, которые затрудняют движение дислокаций, а следовательно, повышают сопротивление деформации и уменьшают пластичность.
Наклеп является одним из важнейших способов изменения свойств, особенно для сплавов, не упрочняющихся термической обработкой, и для металлов, обладающих пластичностью. Методы упрочняющего воздействия можно разделить на поверхностные (обкатка роликами, дробеструйная обработка) и сквозные (прокатка листов, волочение проволоки). Обработка металлов резанием также приводит к наклепу и изменению структуры в тонком поверхностном слое, что необходимо учитывать при последующей эксплуатации изделий.
Таким образом, пластические деформации вызывают повышение плотности дислокаций, искажение кристаллической решетки и приводят к увеличению напряжения, при котором возможны дальнейшие деформации.
Второй способ – создание металлов и сплавов с бездефектной структурой – является более прогрессивным. В настоящее время получают кристаллы небольших размеров (длиной 2–10 мм и толщиной 0,5–2,0 мкм), так называемые «усы», практически без дислокаций, с прочностью близкой к теоретической. Такие кристаллы нашли свое применение для армирования волокнистых композиционных материалов, в микроэлектронике и т. д.
Рис. 3.9. Текстура, возникающая при пластической деформации: а) исходная структура, б) текстура при растяжении, в) текстура при сжатии, г) текстура при сдвиге
При деформировании округлые зерна заменяются вытянутыми в направлении деформации, образуется так называемая текстура (textura – ткань, связь, строение) – анизотропная поликристаллическая или аморфная среда, состоящая из кристаллов или молекул с преимущественной ориентировкой. Текстуры могут быть осевыми – с предпочтительной ориентировкой элементов текстуры относительно одного особого направления, плоскими – с ориентировкой относительно особой плоскости и полными – при наличии особой плоскости и особого в ней направления (рис. 3.9). Текстура создает анизотропию свойств.
Упрочненный металл обладает повышенным запасом внутренней энергии, т. е. находится в неравновесном состоянии. Для приведения металла в равновесное состояние его необходимо нагреть. При нагреве наклепанного металла в нем протекают следующие процессы:
· частичное восстановление структурного совершенства в результате уменьшения точечных дефектов за счет увеличения подвижности атомов (избыточные вакансии и межузельные атомы взаимодействуют между собой, а также поглощаются дислокациями при перераспределении последних при нагреве) и снижение внутренних напряжений (процесс возврата);
· уменьшение плотности дислокаций за счет аннигиляция противоположных по знаку дислокаций и образование субзерен (полигонов), свободных от линейных несовершенств за счет выстраивания дислокационных стенок (процесс полигонизации);
· зарождение и рост новых равноосных зерен вместо ориентированной волокнистой структуры деформированного металла (процесс рекристаллизации).
|
|
|
|
|
|
Рис. 3.10. Изменение прочности, пластичности и зернистого строения
в процессе нагрева деформированного металла
При дальнейшем повышении температуры происходит увеличение размеров наиболее крупных зерен за счет присоединения мелких. С повышением температуры число крупных зерен постепенно растет, пока все мелкие зерна не окажутся присоединенными к крупным – процесс вторичной (собирательной) рекристаллизации.
Температуру начала рекристаллизации, при которой протекает рекристаллизация, происходит разупрочнение холоднодеформированного металла и восстановление его пластичности, называют температурным порогом рекристаллизации ТПР.
Эта температура не является постоянной физической величиной, как, например, температура плавления. Для данного металла (сплава) она зависит от длительности нагрева, степени предварительной деформации, величины зерна до деформации и т. д. Температурный порог рекристаллизации снижается с повышением степени деформации, увеличением длительности нагрева или уменьшением величины зерна до деформации.
Температура начала рекристаллизации ТПР для технически чистых металлов составляет примерно 0,4ТПЛ, для чистых металлов снижается до (0,1–0,2)ТПЛ, а для сплавов возрастает до (0,5–0,6)ТПЛ.
Наклеп и рекристаллизация металлов
Технология наклепа и нагартовки металла
В металлопрокатной промышленности нагартовкой или деформационным упрочнением называется управляемый технологический процесс, который применяют для увеличения твердости металлов, повышения его прочностных характеристик. Эта технология применяется к тем материалам, которые не могут быть уточнены термообработкой. Закалку не применяют для изменения механических свойств проката из медных, алюминиевых сплавов, низкоуглеродистых сталей, сплавов хрома с никелем. Для таких материалов деформационное упрочнение является единственным способом для увеличения прочностных характеристик.
Чем отличается нагартовка от наклепа
Определения нагартовка и наклеп используются для обозначения процесса изменения структуры металла, а также повышение его твердости в результате внешнего воздействия. При этом в понятие наклепа входят как естественные процессы, происходящие в структуре металла, так и управляемые специальными методами обработки.
По своему происхождению наклеп бывает:
В частности, фазовый наклеп (нежелательный) возникает при резке сплавов, обладающих пластичностью и мягкостью. Слишком глубокий рез при большой толщине заготовки, выполненный с большой скоростью, становится причиной интенсивного наклепа, снижения пластичности металла, повышения хрупкости.
В отличие от наклепа нагартовка — это управляемый процесс. Наклеп не всегда приносит пользу. При наклепе снижаются пластические свойства материалов. Например, пластичность низкоуглеродистых сплавов стали снижается более чем в 5 раз. Параллельно происходит снижение устойчивости металла к механическим воздействиям — нагрузкам на разрыв, растяжение, сжатие и изгиб.
Для снятия наклепа применяют термообработку — рекристаллизационный отжиг. Одновременно с повышением пластичности снижается хрупкость металла. Необходимость снятия наклепа возникает при изготовлении металлоизделий, от которых требуется гибкость, пластичность, податливость механической обработке вытяжкой.
Как выполняется деформационное упрочнение
Контролируемый наклеп или нагартовка металла позволяет изменять механические свойства металла, получать изделия с заданными характеристиками.
Обработку заготовок и готовых металлоизделий проводят при помощи дробеметов. Это оборудование, которое создает направленный поток абразивных частиц в процессе дробеметной обработки поверхности. По принципу действия оборудование бывает пневматическим и механическим. Установки первого типа используют для работы силу сжатого воздуха. В механических установках скорость потоку абразива придает центробежное колесо.
Применение дробеметного оборудования позволяет обрабатывать как плоские заготовки простой формы, так и изделия со сложной конфигурацией. Эта технология относится к самым эффективным средствам увеличения срока эксплуатации деталей. Например, после наклепа количество циклов нагружения пружин и рессор до излома увеличивается в 2,5-4 раза.
Принцип нагартовки (наклепа)
В процессе дробеструйного наклепа турбина выбрасывает стальную или чугунную дробь на обрабатываемую поверхность. При ударах дроби о поверхность происходят изменения в структуре поверхностных слоев металла. В результате механической обработке на поверхности, которая подвергается обработке, создаются остаточные напряжения сжатия, которые повышают сопротивляемость к износу, усталости металла, коррозионным процессам под нагрузкой.
Возникновения сжимающих напряжений объясняется следующим образом. Направленные ударные воздействия, производимые дробью, должны вызывать увеличение поверхности. Однако изменению формы препятствуют нижележащие слои металла. Результатом становится уплотнение поверхности, увеличение прочности и твердости металла.
Нагартовка дробью, как правило, является заключительным этапом изготовления изделий, который проводится после механической и термической обработки.
Оборудование, предназначенное для деформационного упрочнения, полностью автоматизировано и контролируется электроникой. Скорость потока абразива и количество дробинок регулируется автоматически.
Наклеп и рекристаллизация металлов
⇐ ПредыдущаяСтр 4 из 12Следующая ⇒
Наиболее впечатляющим свойством металлов при пластической деформации является деформационное упрочнение, или способность металлов становиться прочнее при деформации. Из дислокационной теории следует, что для упрочнения металлов необходимо каким-либо образом затруднить движение дислокаций.
Существует несколько способов упрочнения или закрепления дислокаций, одним из них является упрочнение кристалла пластической деформацией. Ранее рассмотренный простейший способ введения дислокаций в кристалл при сдвиге показывает, что рост пластической деформации увеличивает количество дислокаций в кристалле. Чем сильнее воздействие на металл, тем больше в нем образуется дислокаций. На начальной стадии деформация происходит за счет скольжения относительно небольшого количества дислокаций. В процессе деформирования количество движущихся в кристалле дислокаций постоянно увеличивается, что затрудняют их скольжение. Возникают скопления дислокаций, которые уже неспособны перемещаться по кристаллу. Такие закрепленные дислокации затрудняют движение вновь возникающих дислокаций, т. е. упрочнение металла создается самими дислокациями. В этом случае говорят об упрочнении пластической деформацией или просто о наклепеметалла.
Пластическая деформация оказывает существенное влияние на механические свойства металла и его структуру (см. рис. 6).
Рис. 6. Изменение структуры и свойств деформированного металла
в зависимости от степени деформации
На рис. 6 показано, как под действием приложенной нагрузки зерна, из которых состоят все технические металлы, начинают деформироваться и вытягиваться; объем зерен и их количество при этом не изменяется. Внутри каждого зерна, особенно по его границам, сосредотачивается большое количество дислокаций, плотность которых возрастает от 106–107 см-2 (для недеформированного металла) и до 1010–1012 см-2 (для деформированного). Кристаллическая решетка зерен становится искаженной (несовершенной), это состояние является структурно неустойчивым. С увеличением степени деформации прочность металла увеличивается, а пластичность уменьшается, что может привести к возникновению трещин и разрушению (при большой степени деформации).
Для снятия наклепа деформированный металл нагревают, в результате сначала происходят процессы возврата
и
полигонизации
, приводящие к перераспределению и уменьшению концентрации структурных несовершенств (точечных и линейных дефектов) в кристаллической решетке. При дальнейшем повышении температуры начинается основной процесс, возвращающий наклепанный металл в устойчивое состояние –
рекристаллизация. Это полная или частичная замена деформированных зерен данной фазы новыми, более совершенными зернами той же фазы (см. рис. 7). Новые зерна, зарождающиеся при рекристаллизации, отличаются меньшей плотностью дефектов (дислокаций) и растут за счет деформированных зерен. Рекристаллизация – диффузионный процесс, протекающий в течение какого-то времени (чем выше температура, тем быстрей).
Рис. 7. Изменение структуры и свойств деформированного металла
При нагреве
Наименьшую температуру, при которой начинается процесс рекристаллизации и происходит разупрочнение, называют температурой рекристаллизации. Между температурой рекристаллизации (Т
р) и температурой плавления (
Т
пл) металлов существует простая зависимость, определенная металловедом А.А. Бочваром:
Тр = a×Т
пл (К).
Ниже приведена температура рекристаллизации металлов и сплавов:
р = (0,1 ¸ 0,2)
×Т
пл – для чистых металлов,
р = 0,4
×Т
пл – для технически чистых металлов,
р = (0,5 ¸ 0,6)
×Т
пл – для сплавов (твердых растворов).
Температуру начала рекристаллизации определяют металлографическим и рентгеноструктурным методами, а также по изменению свойств. Если Т
р определяют по изменению твердости, то за
Т
р принимают температуру, при которой прирост твердости, созданный деформацией, уменьшается вдвое (рис. 8).
Рис. 8. Определение температуры рекристаллизации
⇐ Предыдущая4Следующая ⇒
Наклеп и рекристаллизация
Как следует из диаграмм растяжения, при деформации сталей при комнатной температуре предел текучести увеличивается с ростом деформации, то есть материал в этих условиях упрочняется.
– изменение структуры и свойств металлического материала, вызванное пластической деформацией.
Наибольшую сопротивляемость пластическому деформированию должен оказывать металл с очень малой плотностью дислокаций r. По мере увеличения плотности дислокаций r сопротивление пластическому деформированию уменьшается (рис. 3.8).
Рис. 3.8. Зависимость сопротивления деформированию от плотности дислокаций
Это происходит до достижения некоторого критического значения плотности дислокаций rкр, когда начинается взаимодействие силовых полей, окружающих дислокации, что и вызывает увеличение сопротивления пластическому деформированию.
Следовательно, увеличение сопротивления пластическому деформированию можно получить двумя путями: наклепом металла, т. е. прямым повышением плотности дислокаций или доведением плотности дислокаций до очень малого значения.
называется упрочнение металла при холодной пластической деформации. В результате наклепа прочность (σВ, σ0,2, твердость и др.) повышается, а пластичность и ударная вязкость (δ, ψ, КСU) уменьшаются. Упрочнение возникает вследствие увеличения числа дефектов кристаллической структуры, которые затрудняют движение дислокаций, а следовательно, повышают сопротивление деформации и уменьшают пластичность.
Наклеп является одним из важнейших способов изменения свойств, особенно для сплавов, не упрочняющихся термической обработкой, и для металлов, обладающих пластичностью. Методы упрочняющего воздействия можно разделить на поверхностные (обкатка роликами, дробеструйная обработка) и сквозные (прокатка листов, волочение проволоки). Обработка металлов резанием также приводит к наклепу и изменению структуры в тонком поверхностном слое, что необходимо учитывать при последующей эксплуатации изделий.
Таким образом, пластические деформации вызывают повышение плотности дислокаций, искажение кристаллической решетки и приводят к увеличению напряжения, при котором возможны дальнейшие деформации.
Второй способ – создание металлов и сплавов с бездефектной структурой – является более прогрессивным. В настоящее время получают кристаллы небольших размеров (длиной 2–10 мм и толщиной 0,5–2,0 мкм), так называемые «усы», практически без дислокаций, с прочностью близкой к теоретической. Такие кристаллы нашли свое применение для армирования волокнистых композиционных материалов, в микроэлектронике и т. д.
Рис. 3.9. Текстура, возникающая при пластической деформации: а) исходная структура, б) текстура при растяжении, в) текстура при сжатии, г) текстура при сдвиге
При деформировании округлые зерна заменяются вытянутыми в направлении деформации, образуется так называемая текстура
(textura – ткань, связь, строение) – анизотропная поликристаллическая или аморфная среда, состоящая из кристаллов или молекул с преимущественной ориентировкой. Текстуры могут быть осевыми – с предпочтительной ориентировкой элементов текстуры относительно одного особого направления, плоскими – с ориентировкой относительно особой плоскости и полными – при наличии особой плоскости и особого в ней направления (рис. 3.9). Текстура создает анизотропию свойств.
Упрочненный металл обладает повышенным запасом внутренней энергии, т. е. находится в неравновесном состоянии. Для приведения металла в равновесное состояние его необходимо нагреть. При нагреве наклепанного металла в нем протекают следующие процессы:
· частичное восстановление структурного совершенства в результате уменьшения точечных дефектов за счет увеличения подвижности атомов (избыточные вакансии и межузельные атомы взаимодействуют между собой, а также поглощаются дислокациями при перераспределении последних при нагреве) и снижение внутренних напряжений (процесс возврата
· уменьшение плотности дислокаций за счет аннигиляция противоположных по знаку дислокаций и образование субзерен (полигонов), свободных от линейных несовершенств за счет выстраивания дислокационных стенок (процесс полигонизации
· зарождение и рост новых равноосных зерен вместо ориентированной волокнистой структуры деформированного металла (процесс рекристаллизации
Процесс рекристаллизации начинается с образования зародышей новых зерен и заканчивается полным замещением деформированного зерна мелкими равноосными зернами (первичная рекристаллизация),
в результате чего полностью снимается наклеп, созданный при пластическом деформировании (снижаются прочность и твердость металла и увеличивается его пластичность), металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения (рис. 3.10). Плотность дислокаций после рекристаллизации снижается с 1010–1012 до 106–108 см-2.
Температура |
Прочность |
Пластичность |
собирательная рекристаллизация |
первичная рекристаллизация |
возврат |
Рис. 3.10. Изменение прочности, пластичности и зернистого строения в процессе нагрева деформированного металла
При дальнейшем повышении температуры происходит увеличение размеров наиболее крупных зерен за счет присоединения мелких. С повышением температуры число крупных зерен постепенно растет, пока все мелкие зерна не окажутся присоединенными к крупным – процесс вторичной (собирательной) рекристаллизации
Температуру начала рекристаллизации, при которой протекает рекристаллизация, происходит разупрочнение холоднодеформированного металла и восстановление его пластичности, называют температурным порогом рекристаллизации ТПР.
Эта температура не является постоянной физической величиной, как, например, температура плавления. Для данного металла (сплава) она зависит от длительности нагрева, степени предварительной деформации, величины зерна до деформации и т. д. Температурный порог рекристаллизации снижается с повышением степени деформации, увеличением длительности нагрева или уменьшением величины зерна до деформации.
Температура начала рекристаллизации ТПР
для технически чистых металлов составляет примерно 0,4ТПЛ, для чистых металлов снижается до (0,1–0,2)ТПЛ, а для сплавов возрастает до (0,5–0,6)ТПЛ.
ПРАВИЛА ПРИЕМКИ
3.1. Правила приемки должны соответствовать требованиям ГОСТ 14955-77 и дополнительным требованиям, указанным ниже.
3.2. Для проверки качества стали от партии отбирают:
а) для определения твердости — 5%, но не менее пяти прутков;
б) для определения механических свойств (испытания на растяжение и на перегиб) — два прутка.
(Измененная редакция, Изм. N 3).
3.3. По требованию потребителя проверяют химический состав готовой продукции. Отбор проб для химического анализа производят по ГОСТ 7565-81.
3.4. Макроструктуру проверяют при плавочном контроле на предприятии-изготовителе и результаты проверки вносят в документ о качестве.