Что называется работой электрического тока
Работа электрического тока. Закон Джоуля-Ленца.
Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,
где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:
Работа электрического тока на участке цепи является произведением напряжения на концах этого участка на силу тока и на время, на протяжении которого совершалась работа.
Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:
Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтвержден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которому удалось раскалить железную спираль, пропустив через нее электрический ток.
Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на проводнике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.
При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то
Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.
Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.
Работа и мощность электрического тока
теория по физике 🧲 постоянный ток
При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу. Ее принято называть работой тока.
Рассмотрим произвольный участок цепи. Это может быть однородный проводник, к примеру, обмотка электродвигателя или нить лампы накаливания. Пусть за время ∆t через поперечное сечение проводника проходит заряд ∆q. Тогда электрическое поле совершит работу:
Но сила тока равна:
Тогда работа тока равна:
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.
Выражая через закон Ома силу тока и напряжение, получим следующие формулы для вычисления работы тока:
Работа тока измеряется в Джоулях (Дж).
Пример №1. Определите работу тока, совершенную за 10 секунд на участке цепи напряжением 200В и силой тока 16 А.
Закон Джоуля-Ленца
В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.
Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.
Количество теплоты измеряется в Джоулях (Дж).
Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.
Используем закон Ома и закон Джоуля—Ленца:
Мощность тока
Любой электрический прибор (лампа, электродвигатель и пр.) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока.
Мощность тока — это работа, производимая за 1 секунду. Обозначается как P. Единица измерения — Ватт (Вт).
Численно мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:
Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи:
Пример №3. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Определите мощность электрического тока, выделяющуюся на нити лампы.
Выразив силу тока через заряд, прошедший за единицу времени, получим:
Мощность тока равна мощности на внешней цепи. Ее также называют мощностью на нагрузке, полезной мощностью или тепловой мощностью. Ее можно выразить через ЭДС:
Мощность тока на внешней цепи будет максимальная, если сопротивление внешней цепи равно внутреннему сопротивлению: R = r.
Мощность тока внутренней цепи:
Пример №4. ЭДС постоянного тока ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключенном к источнику, P0 = 0,75 Вт. Чему равно минимальное значение силы тока в цепи?
Используем формулу для нахождения полезной мощности:
Применим закон Ома для полной цепи:
Выразим сопротивление внешней цепи:
Так как внутреннее сопротивление равно единице, получаем квадратное уравнение следующего вида:
Решив это уравнение, получим два корня: I = 0,5 и I = 1,5 А. Следовательно, наименьшая сила тока равна 0,5 А.
Подсказки к задачам
Конденсатор в цепи постоянного тока
Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.
Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.
Подсказки к задачам
Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?
Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:
Применим закон Ома:
Приравняем правые части выражений и получим:
Отсюда напряжение на конденсаторе равно:
Напряженность электрического поля равна:
Вольтметр подключён к клеммам источника тока с ЭДС ε = 3 В и внутренним сопротивлением r = 1 Ом, через который течёт ток I = 2 А (см. рисунок). Вольтметр показывает 5 В. Какое количество теплоты выделяется внутри источника за 1 с?
Работа электрического тока: что это такое, формулы, примеры задач
В этой статье я объясню, что такое работа электрического тока, какие единицы измерения для нее используются и какие важные формулы необходимо знать.
Что такое работа электрического тока?
Давайте рассмотрим обычную батарейку. По сути, батарейка преобразует химическую энергию в электрическую энергию электронов. Если теперь подключить её в электрическую цепь, то электроны могут совершать работу, используя свою электрическую энергию, например, зажигать лампочку.
Если вы хотите узнать, сколько электрической энергии было преобразовано в другой вид энергии, то вам нужно рассчитать работу электрического тока.
Определение понятия «электрическая работа» и её единицы измерения.
Работа электрического тока [A] позволяет определить, сколько электрической энергии было или может быть преобразовано в другие виды энергии.
Когда вы рассчитываете работу электрического тока, вы знаете, сколько электрической энергии было преобразовано в другие формы энергии. А уже какие другие формы энергии могут быть — это зависит от ситуации (несколько примеров в списке ниже):
Другой важной единицей измерения является киловатт-час [кВт·ч]. Один киловатт-час равен 3 600 000 ватт-секунд или джоулей.
1 кВт·ч = 1 * 10 3 Вт·ч = 1 * 10 3 * 3600 Вт·с = 3,6 * 10 6 Вт·с = 3,6 * 10 6 Дж.
Полезный факт: а вы знали, что именно электрическую работу измеряют электросчётчики установленные в наших домах и квартирах! Электросчётчики измеряют работу электрического тока в кВт·ч.
По какой формуле вычисляется работа электрического тока?
Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.
Чуть ниже в статье мы разберем два практических примера, которые покажут применение данных формул. Однако перед этим мы кратко рассмотрим еще несколько важных формул.
Примечание: Вы обязательно должны запомнить первые две формулы. Следующие ниже формулы менее важны, но могут быть полезны для вас при решении тех или иных задач.
Другие формулы для определения работы электрического тока.
Закон Ома для участка цепи связывает напряжение U и ток I. Это позволяет нам рассчитать электрическую работу A другим способом.
Тогда вы можете подставить эти формулы в A = U * I * t. В итоге получатся другие формулы для нахождения работы электрического тока:
Примеры задач
У вас есть батарея, подающая постоянное напряжение 12 В и ток 2,3 А. Вы используете эту батарею для освещения лампочки в течение 1 часа. Теперь вы хотите знать, какая работа электрического тока была произведена.
Мы знаем формулу для определения работы электрического тока: A = U * I * q, тогда получаем:
Чтобы дать вам представление о единицах измерения, давайте переведем результат в ватт-секунды и джоули
27,6 Вт·ч = 27,6 * 3600 Вт·с = 99360 Вт·с = 99360 Дж.
Мы знаем формулу для определения работы электрического тока: A = U * q, тогда q = A / U. Подставляя значения в формулу получаем:
Работа и мощность тока
Электрическое поле на выделенном участке совершит работу
где U = Δ φ 12 обозначает напряжение. Эту работу называют работой электрического тока.
Интерпретация закона сохранения энергии. Закон Джоуля-Ленца
Закон Ома для однородного участка цепи при сопротивлении R отражает формула:
Умножим обе части выражения на I Δ t и получим соотношение:
Полученный результат является выражением закона сохранения энергии для однородного участка цепи.
Данный закон называется законом Джоуля-Ленца.
Закон носит название сразу двух известных физиков, поскольку экспериментальным путем был установлен ими обоими в независимости друг от друга.
Можно сказать проще: мощность – это работа, выполненная в единицу времени. Запишем формулу, связывающую работу тока и его мощность:
P = ∆ A ∆ t = U I = I 2 R = U 2 R
Закон Ома для полной цепи выглядит так:
Перемножим обе части выражения с Δ q = I Δ t и получим соотношение, которое будет служить выражением закона сохранения энергии для полной цепи постоянного тока:
R I 2 ∆ t + r I 2 ∆ t = δ I ∆ t = ∆ A с т
Левая часть выражения содержит Δ Q = R I 2 Δ t (тепло, которое выделяется на внешнем участке цепи за время Δ t ) и Δ Q и с т = r I 2 Δ t (тепло, которое выделяется внутри источника за такое же время).
∆ Q + Q и с т = ∆ A с т = δ I ∆ t
Необходимо отметить следующий факт: в указанное соотношение не включена работа электрического поля. Когда ток проходит по замкнутой цепи, электрическое поле работы не совершает; значит тепло производится лишь посредством сторонних сил, которые действуют внутри источника. Электрическое поле здесь выполняет перераспределение тепла между различными участками цепи.
Коэффициент полезного действия источника
Полная мощность источника (или работа, которая производится посредством сторонних сил за единицу времени) составляет:
P и с т = δ I = δ 2 R + r
Внешняя цепь выделяет мощность:
Работа электрического тока
Протекая по цепи электрический ток совершает работу. Опять сравним протекание электрического тока с потоком воды в трубе. Если этот поток направить, например, на лопасти генератора, то поток будет совершать работу, вращая генератор. Таким же образом электрический ток совершает работу, протекая по проводнику. И эта работа тем больше, чем больше сила тока и напряжение в цепи.
Таким образом, работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока в цепи, напряжению на этом участке и времени действия тока. Работа электрического тока обозначается латинской буквой A.
Формула работы электрического тока имеет вид:
A = I*U*t
Произведение I*U есть не что иное, как мощность электрического тока.
Тогда формула работы электрического тока примет вид:
A = P*t
Работа электрического тока измеряется в ваттсекундах или иначе говоря в джоулях.
Поэтому, если мы хотим узнать, какую работу произвел ток, протекая по цепи в течение нескольких секунд, мы должны умножить мощность на это число секунд.
Например, через реостат с сопротивлением 5 Ом протекает ток силой 0,5 А. Нужно определить, какую работу произведет ток в течение 4 часов (14 400 сек.). Так как работа тока в одну секунду будет равна:
P=I 2 R = 0,5 2 *5= 0,25*5 =1,25 Вт,
то за время t=14400 сек. она будет в 14 400 раз больше. Следовательно, работа электрического тока А будет равна:
А = Р*t= 1,25*14 400= 18 000 вт-сек.
Ваттсекунда (джоуль) является слишком малой единицей для измерения работы тока. Поэтому на практике пользуются единицей, называемой ваттчас (втч).
Один ваттчас равен 3 600 Дж, так как в часе 3 600 сек.
В нашем последнем примере работа тока, выраженная в ваттчасах, будет равна:
В электротехнике для измерения работы тока применяются еще большие единицы, называемые гектоваттчас (гвтч) и киловаттчас (квтч):
1 квтч =10 гвтч =1000 втч = 3600000 Дж,
1 гвтч =100 втч = 360 000 Дж,
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!