Что называется произведением вектора на число
Основные свойства умножения вектора на число: описание, примеры
Содержание:
Изучающие математические науки и физику, начиная со старших классов, знакомятся с понятием «вектор». Это направленный отрезок, отличающийся от обычного (ненаправленного) рядом характеристик. Рассмотрим основные свойства умножения вектора на число. Ознакомимся с необходимыми для работы понятиями, приведём примеры задач.
Теория
Векторы применяются в геометрии, компьютерной графике, например, для создания карт освещения, прокладывания траекторий движения. Позволяют быстро вычислять площади геометрических фигур и объёмы тел. В физике векторами являются величины, имеющие направление: сила, ускорение. Обозначаются буквами с чёрточками, например, \overline, \overline, (\overline
Умножение вектора на число
При умножении пары чисел на вектор работают знакомые с начальных классов правила:
Особенности и закономерности произведения чисел и направленных отрезков:
Становится понятно, что произведением ненулевого вектора на число называется коллинеарный вектор. В геометрии:
В алгебре следствием произведения будет тот же вектор, сдвинутый в координатной сетке на указанное число в направлении, которое зависит от его знака.
Физический смысл преобразования – инверсия направления величины (действия силы) в зависимости от знака числа (если отрицательное, меняется на противоположное) с изменением её значения в n (модуль) раз.
Модули можно возводить в степень, перемножать между собой.
Умножение вектора на число
Вы будете перенаправлены на Автор24
Откладывание вектора от данной точки
Для того чтобы ввести понятие умножения вектора на число, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.
Введем следующую теорему:
Доказательство.
Существование: Здесь нужно рассмотреть два случая:
Рисунок 2. Иллюстрация теоремы 1
Единственность: единственность сразу следует из построения, проведенного в пункте «существование».
Теорема доказана.
Умножение вектора на число
Отметим, что в результате произведения вектора на число всегда получается векторная величина.
Свойства произведения вектора на число
Произведение любого вектора с числом ноль равняется нулевому вектору.
Доказательство.
Доказательство.
Доказательство этого закона иллюстрирует рисунок 3.
Рисунок 3. Сочетательный закон
Доказательство этого закона иллюстрирует рисунок 4.
Рисунок 4. Первый распределительный закон
Доказательство этого закона иллюстрирует рисунок 5.
Рисунок 5. Второй распределительный закон
Готовые работы на аналогичную тему
Пример задачи на использование понятия произведения вектора на число
Векторы на ЕГЭ по математике. Действия над векторами
Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?
А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.
Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».
Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.
Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:
Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или
До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.
Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.
Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.
Если координаты вектора заданы, его длина находится по формуле
Сложение векторов
Для сложения векторов есть два способа.
Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.
По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.
При сложении векторов и получаем:
Вычитание векторов
Вектор направлен противоположно вектору . Длины векторов и равны.
Теперь понятно, что такое вычитание векторов. Разность векторов и — это сумма вектора и вектора .
Умножение вектора на число
При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.
Скалярное произведение векторов
Векторы можно умножать не только на числа, но и друг на друга.
Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.
Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:
Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :
Из формулы для скалярного произведения можно найти угол между векторами:
Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.
В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.
Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе.
Онлайн-курс «Математика 10+11 100 баллов»
— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.
Презентация по геометрии на тему «Произведение вектора на число. Свойства произведения»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Произведение вектора на число. Свойства произведения 9 класс Л.С. Атанасян Учитель Коченко Светлана Викторовна
1) Постройте сумму а + b, используя правило треугольника. а b c Построение: d Дано: а b 1) a + b Повторение
5) Упростите выражение: 1 вариант. CA – OB – CD + AB = 2 вариант. BA + CD – OD – CA = = CA + BO + DC + AB = = DO. = BA + CD + DO + AC = = BA + AC + CD + DO = = BO. = DC + CA + AB + BO =
Рассмотрим пример: Один автомобиль движется прямолинейно с постоянной скоростью, второй автомобиль движется в том же направлении со скоростью, вдвое большей, а третий автомобиль движется им навстречу и величина его скорости такая же, как у второго автомобиля. Изучение нового материала
Произведением ненулевого вектора a на число k называется такой вектор b, длина которого равна k a, причем векторы a и b сонаправлены при k0 и противоположно направлены при k0. Произведение нулевого вектора на любое число считается нулевой вектор 0 k =0 Произведение вектора a на число обозначается: k a. Определения:
Из определения произведения вектора на число следует, что: 1) произведение любого вектора на число нуль есть нулевой вектор a 0=0 ; 2) для любого числа k и любого вектора a векторы a и ka коллинеарные.
Основные свойства умножения вектора на число: Для любых чисел k, l и любых векторов a, b справедливы равенства: 1 2 3
Рисунок иллюстрирует сочетательный закон. Представлен случай, когда k = 2, l = 3. B O 1
2 Рисунок иллюстрирует первый распределительный закон. Представлен случай, когда k = 3, l = 2. B O OB =
Упражнение № 776 а) б)
Задача № 779 Решение. Аналогично получаем: а= а= р; р; Ответ: Направления: , , , , ; 2
Домашнее задание п. 83 № 776б, 780 Спасибо за внимание
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1400287
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
В России планируют создавать пространства для подростков
Время чтения: 2 минуты
Россияне чаще американцев читают детям страшные и печальные книжки
Время чтения: 1 минута
Во Франции планируют ввести уголовное наказание за буллинг в школе
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
ВПР для школьников в 2022 году пройдут весной
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Определение векторного произведения
Из вышесказанного можем ввести определение векторного произведения. Данное определение дается для двух векторов, определенных в прямоугольной системе координат трехмерного пространства.
Векторным произведением двух векторов a → и b → будем называть такой вектор заданный в прямоугольной системе координат трехмерного пространства такой, что:
Координаты векторного произведения
Так как любой вектор имеет определенные координаты в системе координат, то можно ввести второе определение векторного произведения, которое позволит находить его координаты по заданным координатам векторов.
Свойства векторного произведения
Данные свойства имеют не сложные доказательства.
Для примера можем доказать свойство антикоммутативности векторного произведения.
Векторное произведение – примеры и решения
В большинстве случаев встречаются три типа задач.
Задачи второго типа имеют связь с координатами векторов, в них векторное произведение, его длина и т.д. ищутся через известные координаты заданных векторов a → = ( a x ; a y ; a z ) и b → = ( b x ; b y ; b z ) .
Рассмотрим следующие примеры.
Задачи третьего типа ориентированы на использование свойств векторного произведения векторов. После применения которых, будем получать решение заданной задачи.
Геометрический смысл векторного произведения
Это и есть геометрический смысл векторного произведения.
Физический смысл векторного произведения
В механике, одном из разделов физики, благодаря векторному произведению можно определить момент силы относительно точки пространства.