Что называется превышением в геодезии
Топографическое превышение
Превышение (топографическое превышение) — понятие в классификации относительных высот гор, являющееся одним из главных критериев позволяющих считать вершины независимыми горами. Превышение вершины — это высота этой вершины относительно самой низкой точки на кривой, проведенной по наиболее высокому водоразделу от этой вершины к первой более высокой вершине на этом водоразделе, называемой родительской горой.
Топографическое превышение вершины можно получить, если вычесть из её высоты над уровнем моря величину, на которую необходимо спуститься, чтобы подняться на более высокую вершину. Если представить, что уровень моря поднимется так, что рассматриваемая вершина станет наивысшей точкой острова, то тогда её высота над уровнем моря и есть превышение.
Более высокий пик через основу седловины часто непосредственно прилегает к более низкому пику, однако это не всегда верно в случае достаточно глубоких седловин. Подобные случаи могут быть выявлены лишь с помощью тщательного анализа географической информации. Например:
Если основа седловины горы расположена достаточно близко к пику этой же горы, вычисление превышения не представляет особых сложностей и может быть выполнено вручную с использованием топографической карты.
В более сложных случаях, таких, например, как описаны выше, обычно используют компьютер. Американская геологическая служба USGS использует специальную программу WinProm, написанную Эдвардом Эрлом (Edward Earl).
Уклон линии. Превышение.
Уклономназывается превышение, которое приходится на единицу горизонтального расстояния.
Вычисляется по формуле i= ∆h/L. Уклон может выражаться в метрах, в процентах %, в промилях ‰ или в градусах.
Для нахождения уклона в %, надо тангенс уклона в метрах умножить на 100.
Для нахождения уклона в ‰, надо тангенс уклона в метрах умножить на 1000.
Чтобы выразить уклон в градусах, надо тангенс в метрах найти по таблице Брадиса в градусах и минутах.
На топографической карте уклон в градусах можно измерить по графику заложений внизу карты.
Превышение –разница высот между двумя точками.
Превышение можно найти несколькими методами.
1). Геометрическим нивелированием с помощью горизонтального луча нивелира и нивелирной рейки.
2). Тригонометрическим нивелированием по измеренному теодолитом вертикальному углу наклона между точками и расстоянию между ними по формуле ∆h = L* tg γ * (b-J). Где: b – высота теодолита, J – высота рейки или вешки на точке, L – расстояние между точками в метрах, tg γ – вертикальный угол.
3). Физическим нивелированием при помощи барометра (измеряя атмосферное давление), при помощи радиолокатора. Физические методы менее точны.
Вопрос № 15.
Ориентирование направлений. Начальные направления.
Ориентированием линии называется определение направления на местности относительно принятого начального направления.
За начальноенаправление в геодезии принимается северное направление меридиана. Начальным меридианом может быть астрономический, магнитный или осевой меридиан. Для ориентирования линий на местности служат азимуты, дирекционные углы и румбы.
Азимут, это угол, который отсчитывается от северного направления меридиана.
Если угол отсчитывается от астрономического меридиана, то он называется истинным азимутом.
Если угол отсчитывается от магнитного меридиана, то он называется магнитным азимутом.
Если угол отсчитывается от осевого меридиана, то он называется дирекционным углом. Азимуты и дирекционные углы могут изменяться от 0º до 360º.
Румбслужит для большего удобства при ориентировании. Он может изменяться от 0º до 90º. За начальное направление для него принимается либо северное направление меридиана, либо южное (в зависимости от четверти). В 1 и 4 четвертях румб отсчитывается от северного направления меридиана, а во 2 и в 3 четвертях румб отсчитывается от южного направления меридиана.
Лекция 8. Сущность и методы измерения превышений.
Измерения линий на местности могут выполняться непосредственно, путем откладывания мерного прибора в створе измеряемой линии, с помощью специальных приборов дальномеров и косвенно. Косвенным методом измеряют вспомогательные параметры (углы, базисы), а длину вычисляют по формулам. Виды измерений и погрешностей.
Геодезия и маркшейдерия относятся к таким областям техники, где измерения являются необходимым элементом производственной деятельности. И не только необходимым, но таким массовым в своем исполнении, что и вообразить себе невозможно. Достаточно сказать, например, что для съёмки местности площадью всего в 1 га в масштабе 1:500 (для сравнительно средней сложности местности) понадобится около 200 точек, для каждой из которых определяются три координаты: две плановые (х, у) и высота (Н). Измерения в геодезии являются количественной и качественной основой для изучения Земли, отдельных ее фрагментов, для получения исходной информации при решении всех инженерно-геодезических задач и выполнения топографических работ. Любое измерение выражается количественной характеристикой (величиной угла, длиной линии, превышением, площадью участка местности и т.п.) и имеет качественную сторону, которая характеризует точность полученного результата. Величины, которые получают в процессе производства геодезических работ, можно классифицировать наизмеренные и вычисленные. В первом случае величину получают обычно непосредственно, путем сравнения её с единицей средства измерения, или косвенно, как функцию двух или нескольких непосредственно измеренных величин. Например, площадь прямоугольника может быть получена как произведение его сторон, измеренных непосредственно. Результаты геодезических измерений Под результатом геодезического измерения подразумевается
конечный результат, который получается в процессе всех произведённых измерений и вычислений. Например, конечным результатом может быть высота точки, её плановые координаты, площадь участка и т.п. Виды геодезических измерений
При геодезических работах основной объём информации получают с помощью геодезических измерений, которые классифицируются следующим образом: по назначению; по точности; по объёму; по характеру получаемой информации; по инструментальной природе получаемой информации; по взаимозависимости результатов измерений. Классификация по назначению
По своему назначению геодезические измерения бывают: угловые; линейные; нивелирные (измеряются высоты или превышения); координатные (измеряются координаты или их приращения); гравиметрические (измеряют ускорения силы тяжести).
В связи с этим сформировались следующие технологические процессы топографо-геодезических работ: топографическая съёмка разбивочные работы определение деформаций зданий, сооружений, земной коры триангуляция трилатерация полигонометрия спутниковые измерения астрономические определения гравиметрические работы створные измерения
В зависимости от типов используемых средств геодезические измерения делят на три группы: высокоточные точные (средней точности) технические (малой точности) Процесс измерения в геодезии осуществляется при наличии пяти составляющих (факторов): объект — что измеряется субъект — кто измеряет средство — чем измеряется метод — как измеряется внешняя среда — в каких условиях и где измеряется. Конкретное содержание и состояние факторов геодезического измерения определяются условиями, которые могут быть классифицированы по следующим признакам: По Физическому Исполнению: прямые(непосредственные)
измерения, в которых значение измеряемой величины получают непосредственным сравнением с однородной физической величиной (эталоном). Примером прямого измерения служит измерение длины линии рулеткой или мерной лентой; косвенные измерения, в которых значение определяемой величины получают из вычислений, в которых в качестве исходных используют результаты измерений величин, связанных с определяемой. Например: измерение длины линии светодальномером. В этом случае измеряется непосредственно время прохождения светового сигнала от дальномера до отражателя и обратно, а затем вычисляется длина линии.
По Роду: однородные (измерения однородных физических величин) разнородные (все прочие по отношению к однородным) По Количеству: необходимые измерения дают только по одному значению каждой измеряемой величины дополнительные или избыточные измерения производятся для получения нескольких значений измеряемой величины в целях контроля, исключения грубых погрешностей или повышения качества результатов измерений Равноточные и неравноточные измерения Результаты геодезических измерений в своей группе могут быть равноточными и неравноточными. Если измерения выполнены прибором одного и того же класса точности, по одной и той же методике (программе), в одинаковых внешних условиях, одним и тем же наблюдателем (либо наблюдателями одной квалификации), то такие измерения относят к равноточным. При несоблюдении хотя бы одного из перечисленных выше условий результаты измерений классифицируют как неравноточные. Примером равноточных измерений могут являться результаты измерений длины одной и той же линии либо линий, примерно равных друг другу, полученные при неизменных условиях внешней среды, одним и тем же измерительным средством (прибором), одними и теми же исполнителями работ, по общей для всех результатов измерений программе. Если в процессе измерений длины линии, например, светодальномером, изменится температура
окружающего воздуха, влажность, давление, то это может привести к получению части неравноточных результатов в общей группе результатов измерений, поскольку при изменении внешних условий может произойти и изменение характеристик измерительного прибора, характеристик прохождения светового луча в атмосфере. Число измеренных величин и число измерений может быть необходимым и избыточным. При измерении, например, углов в треугольнике число необходимых измеренных величин равно двум, в семиугольнике – шести. Значение третьего (седьмого) угла можно вычислить по сумме двух (шести) измеренных углов. Если необходимо решить плоский треугольник, то дополнительно к измеренным двум углам обязательным является знание длины хотя бы одной из его сторон, в связи с чем число необходимых измеренных величин должно быть равно трём (одно измерение – линейное, два – угловые). Та же задача решается и при выполнении двух линейных измерений и одного угла, заключённого между измеренными сторонами треугольника. Таким образом, числом необходимых измеренных величин является минимально необходимое их число, при котором обеспечивается решение поставленной задачи. Число же измеренных величин, превышающих число необходимых, называется числом избыточных величин. В геодезии, в маркшейдерии принято, но и не только принято, а является обязательным, получать и избыточные величины, что обеспечивает обнаружение грубых погрешностей и промахов, позволяет повысить точность результатов измерений. Поэтому в треугольнике, например, обязательно измеряют все три угла и сравнивают полученную сумму углов с теоретической. Если сформулировать задачу с точки обеспечения заданной точности измерений, то необходимое число измерений должно обеспечивать заданную точность измерения одной величины или самого результата измерений. Так, в том же треугольнике, каждый из его углов может быть измерен несколько раз. Все избыточные измерения повышают надёжность результатов, а также их точность, но в то
же время и увеличивают объём работ, и часто прирост увеличения точности становится экономически нецелесообразным из-за большого числа измерений. Иногда говорят, что числом необходимых измерений, например, горизонтального угла, является одно измерение, остальные – избыточные. Это не всегда так, поскольку, одно измерение не позволяет производить оценку точности и может содержать неконтролируемую грубую погрешность (промах). По Физической Природе Носителей Информации: визуальная фиксация результатов измерения, когда передача информации в системе «прибор — цель» осуществляется с участием наблюдателя (оператора); невизуальные измерения в основе своей полностью или частично исключают участие наблюдателя. В этом случае используют средства радиоэлектроники, микропроцессорной техники и др.
По Взаимозависимоcти: независимые зависимые коррелированные Виды погрешности: 1. Грубые погрешности, когда результаты измерений значительно отличаются от истинного значения. 2. Бывают систематические, которые возникают по конкретным причинам, по определённой математической зависимости. 3. Случайные погрешности, возникают хаотично по непонятным причинам, вне математической закономерности. Погрешность. Абсолютная погрешность-разность между результатом измерения и системным значением измеряемой величины. Абсолютная погрешность- это то что есть, то что должно быть. За истинное значение принимают результат получаемый теоретическим путём высокоточного измерения. Относительная погрешность- отношение абсолютной погрешности к результату измерения. Выражается всегда простой дробью с 1 в числителе.
7. Определение превышений и отметок точек
Время чтения: 8 минут
7.1. Задачи и виды нивелирования
Нивелированием называется совокупность геодезических измерений для определения превышений между точками, а также их высот.
Нивелирование производят для изучения рельефа, определения высот точек при проектировании, строительстве и эксплуатации различных инженерных сооружений. Результаты нивелирования имеют большое значение для решения научных задач как самой геодезии, так и для других наук о Земле.
В зависимости от применяемых приборов и измеряемых величин нивелирование делится на несколько видов.
1. Геометрическое нивелирование – определение превышения одной точки над другой посредством горизонтального визирного луча. Осуществляют его обычно с помощью нивелиров, но можно использовать и другие приборы, позволяющие получать горизонтальный луч.
2. Тригонометрическое нивелирование – определение превышений с помощью наклонного визирного луча. Превышение при этом определяют как функцию измеренного расстояния и угла наклона, для измерения которых используют соответствующие геодезические приборы (тахеометр, кипрегель).
3. Барометрическое нивелирование – в его основу положена зависимость между атмосферным давлением и высотой точек на местности.
4. Гидростатическое нивелирование – определение превышений основывается на свойстве жидкости в сообщающихся сосудах всегда находиться на одном уровне, независимо от высоты точек, на которых установлены сосуды.
7. Стереофотограмметрическое нивелирование основано на определении превышения по паре фотоснимков одной и той же местности, полученных из двух точек базиса фотографирования.
8. Определение превышений по результатам спутниковых измерений. Использование спутниковой системы ГЛОНАСС – Глобальная Навигационная Спутниковая Система позволяет определять пространственные координаты точек.
7.2. Способы геометрического нивелирования
Геометрическое нивелирование – это наиболее распространенный способ определения превышений. Его выполняют с помощью нивелира, задающего горизонтальную линию визирования.
Устройство нивелира достаточно простое. Он имеет две основные части: зрительную трубу и устройство, позволяющее привести визирный луч в горизонтальное положение.
Геометрическое нивелирование можно выполнять по следующей схеме:
Рис. 61. Способы нивелирования
При нивелировании из середины нивелир располагают между двумя точками примерно на одинаковых расстояниях (рис.61, а). В точках устанавливают отвесно рейки с сантиметровыми делениями. Их ставят на колышек, вбитый вровень с землей, или на специальный костыль, так как рейка под собственной тяжестью будет давить на землю и отсчет по ней будет меняться. Визирный луч зрительной трубы нивелира последовательно наводят на рейки и берут отсчеты З и П, которые записывают в миллиметрах в журнал нивелирования. Отсчет по рейке производят по средней нити нивелира, т.е. по месту, где проекция средней нити пересекает рейку. Превышение между точками определяют по формуле
где З – отсчет назад на заднюю точку А; П – отсчет вперед на переднюю точку B.
При нивелировании вперед прибор устанавливают над точкой А (рис. 61, б), измеряют его высоту V и берут отсчет П по рейке в точке В. Превышение определяют вычитанием из высоты прибора V отсчета П.
Высоту передней точки В вычисляется по формуле:
Высоту визирного луча на уровенной поверхностью называют горизонтом инструмента HГИ (рис. 61) и вычисляют
Место установки нивелира называется станцией. Если для определения превышения между точками А и В достаточно установить прибор один раз, то такой случай называется простым нивелированием.
Если же превышение между точками определяют только после нескольких установок нивелира, такое нивелирование называют сложным или последовательным (рис. 62).
Рис. 62. Последовательное нивелирование.
В этом случае точки С и D называют связующими. Превышение между ними определяют как при простом нивелировании:
; ;
Такую схему нивелирования называют нивелирным ходом.
7.3. Классификация нивелиров
Согласно действующему ГОСТу 10528-90 [9] нивелиры изготавливают трёх типов: высокоточные Н-05, точные Н-3 (Н-3К, Н-3КЛ) и технические Н-5 (Н-5К и Н-5КЛ).
В названии Н – нивелир; 05, 3 и 5 – средняя квадратическая ошибка измерения превышения в миллиметрах на 1 км двойного нивелирного хода; К – компенсатор; Л – лимб.
В зависимости от того, каким способом визирный луч устанавливается в горизонтальное положение, нивелиры изготавливают в двух исполнениях:
— с цилиндрическим уровнем при зрительной трубе, с помощью у которого осуществляется горизонтирование визирного луча (рис. 63);
— с компенсатором – свободно подвешенная оптико-механическая система, которая приводит визирный луч в горизонтальное положение. В названии нивелира буква К обозначает компенсатор (Н-3К, Н-3КЛ)(рис. 64).
Рис. 63. Точный нивелир Н-3 с цилиндрическим уровнем при зрительной трубе: 1 – подъемные винты; 2 – круглый уровень; 3 – элевационный винт; 4 – окуляр зрительной трубы с диоптрийным кольцом; 5 – визир; 6 – кремальера; 7 – объектив зрительной трубы; 8 – закрепительный винт; 9 – наводящий винт; 10 – контактный цилиндрический уровень; 11 – юстировочные винты цилиндрического уровня
Схема горизонтирования визирного луча в нивелире с компенсатором
ЗН-3КЛ
Рис. 65. Точный нивелир ЗН-3КЛ с компенсатором и лимбом: 1 – лимб; 2 – наводящий винт; 3 – кремальера; 4 – визир.
Точные нивелиры Н-3 и 3Н-3КЛ предназначены для нивелирования III и IV классов.
3Н-5КЛ
Рис. 65. Технический нивелир 3Н-5КЛ
Техническими нивелирами выполняют техническое нивелирование для определения высот точек высотного съемочного обоснования и при решении различных инженерно-технических задач при изыскании, строительстве и эксплуатации линейных сооружений и промышленно-гражданском строительстве.
Нивелиры иностранного производства
SOKKIA
SETL
Электронные нивелиры
Trimble
Лазерный нивелир
7.4. Нивелирные рейки
Нивелирные рейки для нивелирования III – IV класса и технического изготавливают из деревянных брусьев двутаврового сечения шириной 8 – 10 и толщиной 2 – 3 см.
Рейка РН-3 (рис. 66) имеет длину 3 м. Деления нанесены через 1 см. Нижняя часть рейки заключена в металлическую оковку и называется пяткой.
Основная шкала имеет деления черного и белого цвета, ноль совмещен с пяткой рейки. Дополнительная шкала на другой стороне рейки имеет чередующиеся красные и белые деления. С пяткой рейки совмещен отсчет больше 4000 мм. Часто встречаются комплекты реек, у которых с пятками красных сторон совпадают отсчеты 4687 и 4787 мм. Поэтому превышения, измеренные по красным сторонам реек, будут больше или меньше на 100 мм измеренных по черным сторонам реек.
Рис. 66. Нивелирная рейка (а) и поле зрения зрительной трубы нивелира с цилиндрическим уровнем (б)
7.5. Влияние кривизны Земли и рефракции на результаты нивелирования
При выводе формул для способов нивелирования из середины и вперед принято, что уровенная поверхность является плоскостью, визирный луч прямолинеен и горизонтален, рейки, установленные в точках, параллельны между собой.
На самом деле уровенная поверхность не является плоскостью и рейки, установленные в точках А и В перпендикулярно поверхности, непараллельны между собой (рис. 67), следовательно отсчеты З и П преувеличены на величину поправок за кривизну Земли СМ = К1 и DN = К2.
Рис. 67. Влияние кривизны Земли и рефракции на результаты геометрического нивелирования
Поправки за кривизну Земли равны:
,
Кроме того известно, что луч света распространяется прямолинейно лишь в однородной среде. В реальной атмосфере, плотность которой увеличивается по мере приближения к поверхности Земли, луч света идет по некоторой кривой, которая называется рефракционной кривой. Вследствие этого визирный луч имеет форму рефракционной кривой радиуса R1 и пересекает рейки в точках C’ и D’. Поэтому отчеты по рейкам уменьшаются на величину поправок за рефракцию: СC’ = r1 и DD’= r2, которые определяются по формуле
Радиус рефракционной кривой зависит от температуры, плотности, влажности воздуха и др. Отношение радиуса Земли R к радиусу рефракционной кривой R1называют коэффициентом земной рефракции, среднее значение которого принимают
,
где f1 и f2 – поправки за кривизну Земли и рефракцию равны
Следовательно превышение между точками А и В с учётом поправок за кривизну Земли и рефракцию равно
Необходимость учета поправки зависит от требуемой точности измерений.
Из формулы следует, что при равенстве расстояний от нивелира до реек и примерно одинаковых условиях можно считать, что f1 = f2 и h = З – П. Таким образом, при нивелировании из середины с соблюдением равенства плеч влияние кривизны Земли и рефракции практически устраняется.
7.6. Вопросы для самоконтроля
1. Что называется нивелированием?
2. Назовите виды нивелирования?
3. Назовите способы геометрического нивелирования?
4. В чем заключается способ нивелирования из середины и вперед?
5. В чем сущность последовательного нивелирования?
6. В чем сущность тригонометрического, барометрического и гидростатического нивелирования?
7. Как нивелиры классифицируются по точности?
8. Чем отличается уровенный нивелир от нивелира с компенсатором?
9. Когда можно не учитывать поправки за кривизну Земли и рефракцию при геометрическом нивелировании?