Что называется пределом функции
Предел функции: основные понятия и определения
В этой статье мы расскажем, что из себя представляет предел функции. Сначала поясним общие моменты, которые очень важны для понимания сути этого явления.
Понятие предела
Если мы не можем определить ни конечное, ни бесконечное значение, это значит, что такого предела не существует. Примером этого случая может быть предел от синуса на бесконечности.
Что такое предел функции
В этом пункте мы объясним, как найти значение предела функции в точке и на бесконечности. Для этого нам нужно ввести основные определения и вспомнить, что такое числовые последовательности, а также их сходимость и расходимость.
При x → ∞ предел функции f ( x ) является бесконечным, если последовательность значений для любой бесконечно большой последовательности аргументов будет также бесконечно большой (положительной или отрицательной).
Решение
Далее мы запишем то же самое, но для бесконечно большой отрицательной последовательности.
Здесь тоже видно монотонное убывание к нулю, что подтверждает верность данного в условии равенства:
Ответ: Верность данного в условии равенства подтверждена.
Решение
Мы видим, что данная последовательность бесконечно положительна, значит, f ( x ) = lim x → + ∞ e 1 10 x = + ∞
Наглядно решение задачи показано на иллюстрации. Синими точками отмечена последовательность положительных значений, зелеными – отрицательных.
Перейдем к методу вычисления предела функции в точке. Для этого нам нужно знать, как правильно определить односторонний предел. Это пригодится нам и для того, чтобы найти вертикальные асимптоты графика функции.
Теперь сформулируем, что такое предел функции справа.
Теперь мы разъясним данные определения, записав решение конкретной задачи.
Решение
Значения функции в этой последовательности будут выглядеть так:
Чтобы более глубоко изучить теорию пределов, советуем вам прочесть статью о непрерывности функции в точке и основных видах точек разрыва.
Предел функции.
Предел функции – число a будет пределом некоторой изменяемой величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a.
Или другими словами, число A является пределом функции y = f (x) в точке x0, если для всякой последовательности точек из области определения функции, не равных x0, и которая сходится к точке x0 (lim xn = x0), последовательность соответствующих значений функции сходится к числу A.
График функции, предел которой при аргументе, который стремится к бесконечности, равен L:
Предел функции по Гейне.
Значение А является пределом (предельным значением) функции f (x) в точке x0 в случае, если для всякой последовательности точек , которая сходится к x0, но которая не содержит x0 как один из своих элементов (т.е. в проколотой окрестности x0), последовательность значений функции сходится к A.
Предел функции по Коши.
Ответ
Необходимо рассчитать предел
Таким образом, числитель будет таким:
Далее сокращаем числитель и знаменатель на (x – 1):
Ответ
Решение пределов функции.
Чтобы решить пределы, следуйте правилам:
Разобравшись в сути и основных правилах решения предела, вы получите базовое понятие о том, как их решать.
Предел функции
Из Википедии — свободной энциклопедии
Преде́лом фу́нкции (предельным значением функции) в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Наиболее часто определение предела функции формулируют на языке окрестностей. То, что предел функции рассматривается только в точках, предельных для области определения функции, означает, что в любой окрестности данной точки существуют точки области определения. Это позволяет говорить о стремлении аргумента функции к данной точке. При этом предельная точка области определения не обязана принадлежать самой области определения: например, можно рассматривать предел функции на концах открытого интервала, на котором определена функция (сами концы интервала в область определения не входят).
В общем случае необходимо конкретно указывать способ сходимости функции, для чего вводят так называемую базу подмножеств области определения функции, и тогда определение предела функции формулируют по (заданной) базе. В этом смысле система проколотых окрестностей данной точки — частный случай такой базы множеств.
Также благодаря рассмотрению расширенной вещественной прямой (на которой базу окрестностей можно построить и для бесконечно удалённой точки) можно определить такие понятия, как предел функции при стремлении аргумента к бесконечности, а также стремление самой функции к бесконечности. Предел последовательности (как предел функции натурального аргумента) как раз представляет собой пример сходимости по базе «стремление аргумента к бесконечности».
Отсутствие предела функции в точке означает, что для любого заданного значения области значений можно подобрать такую окрестность этого значения, что в любой сколь угодно малой окрестности точки, в которой функция принимает заданное значение, существуют точки, значение функции в которых окажется за пределами указанной окрестности.
Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция называется непрерывной в данной точке.
Предел функции – определения, теоремы и свойства
Определение предела функции
Первое определение предела функции по Гейне
С помощью логических символов существования и всеобщности это определение можно записать следующим образом:
.
См. «Универсальное определение предела функции по Гейне и по Коши».
Второе определение по Коши
Здесь a и x 0 также могут быть как конечными числами, так и бесконечно удаленными точками. С помощью логических символов существования и всеобщности это определение можно записать следующим образом:
.
Если в качестве множества взять левую или правую окрестность конечной точки, то получим определение предела по Коши слева или справа.
Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство
Применяемые окрестности точек
Далее мы приводим формулировки определений предела функции по Коши для разных случаев, используя определения окрестностей с равноудаленными концами.
Конечные пределы функции в конечных точках
С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.
Конечные пределы функции в бесконечно удаленных точках
Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Бесконечные пределы функции
Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.
Свойства и теоремы предела функции
Основные свойства
Функция имеет предел в точке тогда и только тогда, когда она имеет в этой точке равные односторонние пределы.
Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.
Доказательства основных свойств приведены на странице
«Основные свойства предела функции».
Арифметические свойства предела функции
Доказательства арифметических свойств приведены на странице
«Арифметические свойства предела функции».
Критерий Коши существования предела функции
Предел сложной функции
Доказательство теоремы приводится на странице
«Предел и непрерывность сложной функции».
Бесконечно малые и бесконечно большие функции
Бесконечно малые функции
Доказательства свойств изложены в разделе
«Свойства бесконечно малых функций».
Бесконечно большие функции
Свойства бесконечно больших функций
Связь между бесконечно большими и бесконечно малыми функциями
Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.
Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства».
Пределы монотонных функций
Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.
Аналогичная теорема для невозрастающей функции.
Доказательство теоремы изложено на странице
«Пределы монотонных функций».
Определение функции, верхней и нижней грани
Элемент x ∈ X называют аргументом функции или независимой переменной.
Элемент y ∈ Y называют значением функции или зависимой переменной.
Если это особо не оговорено, мы рассматриваем функции, области определения и множества значений которых принадлежат множеству действительных чисел.
Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Предел функции
Понятие предела.
Важную роль в курсе математического анализа играет понятие предела, связанное с поведением функции в окрестности данной точки. Напомним, что \(\delta\) — окрестностью точки \(a\) называется интервал длины \(2\delta\) с центром в точке \(a\), то есть множество Исследуем функцию \(f(x)=\displaystyle \frac \(\triangle\) Функция \(f\) определена при всех \(x\in\mathbb Рис. 10.1 Из этого рисунка видно, что значения функции близки к 2, если значения \(x\) близки к 1 (\(x\neq 1)\). Придадим этому утверждению точный смысл. Пусть задано любое число \(\varepsilon>0\) и требуется найти число \(\delta>0\) такое, что для всех \(x\) из проколотой \(\delta\)-окрестности точки \(x=1\) значения функции \(f(x)\) отличаются от числа 2 по абсолютной величине меньше, чем на \(\varepsilon\). Иначе говоря, нужно найти число \(\delta>0\) такое, чтобы для всех \(x\in\dot_<\delta>(a)\) соответствующие точки графика функции \(y=f(x)\) лежали в горизонтальной полосе, ограниченной прямыми \(y=2-\varepsilon\) и \(y=2+\varepsilon\) (см. рис. 10.1), то есть чтобы выполнялось условие \(f(x)\in U_<\varepsilon>(2)\). В данном примере можно взять \(\delta=\varepsilon\). В этом случае говорят, что функция \(f(x)\) стремится к двум при \(x\), стремящемся к единице, а число 2 называют пределом функции \(f(x)\) при \(x\rightarrow 1\) и пишут \(\displaystyle \lim \(\triangle\) Из графика этой функции (рис. 10.2) видно, что для любого \(\varepsilon>0\) можно найти \(\delta>0\) такое, что для всех \(x\in\dot_<\delta>(0)\) выполняется условие \(f(x)\in U_<\varepsilon>(1)\). В самом деле, прямые \(y=1+\varepsilon\) и \(y=1-\varepsilon\) пересекают график функции \(y=f(x)\) в точках, абсциссы которых равны \(x_<1>=-\varepsilon,\ x_2=\sqrt<\varepsilon>\). Пусть \(\delta\) — наименьшее из чисел \(|x_<1>|\) и \(x_2\), т.e. \(\displaystyle \delta=\min(\varepsilon,\sqrt<\varepsilon>)\). Тогда если \(|x| Число \(A\) называется пределом функции \(f(x)\) в точке \(a\), если эта функция определена в некоторой окрестности точки \(a\), за исключением, быть может, самой точки \(a\), и для каждого \(\varepsilon>0\) найдется число \(\delta>0\) такое, что для всех \(x\), удовлетворяющих условию \(|x-a| 0\ \exists\delta>0:\ \forall x:0 0\ \exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow f(x)\in U_<\varepsilon>(A).\nonumber Таким образом, число \(A\) есть предел функции \(f(x)\) в точке \(a\), если для любой \(\varepsilon\)-окрестности числа \(A\) можно найти такую проколотую \(\delta\)-окрестность точки \(a\), что для всех \(x\), принадлежащих этой \(\delta\)-окрестности, соответствующие значения функции содержатся в \(\varepsilon\)-окрестности числа \(A\). В определении предела функции в точке \(a\) предполагается, что \(x\neq a\). Это требование связано с тем, что точка \(a\) может не принадлежать области определения функции. Отсутствие этого требования сделало бы невозможным использование предела для определения производной, так как производная функции \(f(x)\) в точке \(a\) — это предел функции Отметим еще, что число \(\delta\), фигурирующее в определении предела, зависит, вообще говоря, от \(\varepsilon\), то есть \(\delta=\delta(\varepsilon)\). Число \(A\) называется пределом функции \(f(x)\) в точке \(a\), если эта функция определена в некоторой проколотой окрестности точки \(\alpha\), то есть \(\exists\delta_<0>>0:\ \dot_<\delta_<0>>(a)\subset D(f)\), и для любой последовательности \(\ Пользуясь определением предела по Гейне, доказать, что функция $$ \(\triangle\) Достаточно показать, что существуют последовательности \(\ Тогда \(\displaystyle \lim_ Если функция \(f\) определена в проколотой \(\delta_<0>\)-окрестности точки \(a\) и существуют число \(A\) и последовательность \(\ Так, например, для функции \(f(х)=\displaystyle \sin\frac<1> Рис. 10.3 Определения предела функции по Коши и по Гейне эквиваленты. \(\circ\) В определениях предела функции \(f(x)\) по Коши и по Гейне предполагается, что функция \(f\) определена в некоторой проколотой окрестности точки \(a\), то есть существует число \(\delta_0>0\) такое, что \(\dot_<\delta_<0>>\in D(f)\). Пусть \(а\) — предельная точка числового множества \(E\), то есть такая точка, в любой окрестности которой содержится по крайней мере одна точка множества \(E\), отличная от \(a\). Тогда число \(A\) называют пределом по Коши функции \(f(x)\) в точке \(a\) по множеству \(E\) и обозначают \(\displaystyle \lim_ Число \(A\) называют пределом слева функции \(f(x)\) в точке a и обозначают \(\displaystyle \lim_ Рис. 10.4 Отметим еще, что если Аналогично Рис. 10.5 Аналогичный смысл имеют записи вида Например, Говорят, что функция \(f(x)\), определенная в некоторой проколотой окрестности точки \(a\), имеет в этой точке бесконечный предел, и пишут \(\lim_ В этом случае функцию \(f(x)\) называют бесконечно большой при \(x\rightarrow a\). Рис. 10.6 Например, если \(f(x)=1/x\), то \(\displaystyle \lim_ Аналогично говорят, что функция \(f(x)\), определенная в некоторой проколотой окрестности точки \(a\), имеет в этой точке предел, равный \(+\infty\), и пишут \(\displaystyle \lim_ Если $$ то говорят, что число \(A\) есть предел функции \(f(x)\) при x, стремящемся к плюс бесконечности, и пишут \(\displaystyle \lim_ Например, если \(f(x)=\displaystyle\frac<3-2x> Если \(\forall\varepsilon>0 \ \exists\delta>0:\forall x\in U_<\delta>(-\infty)\rightarrow f(x)\in U_<\varepsilon>(A)\), то есть неравенство \(|f(x)-A| 0\ \exists\delta>0:\forall x\in U_<\delta>(\infty)\rightarrow f(x)\in U_<\varepsilon>(A),\nonumber Точно так же вводится понятие бесконечного предела в бесконечности. Например,запись \(\displaystyle \lim_ Покажем, что функция, имеющая конечный предел в заданной точке, обладает некоторыми локальными свойствами, то есть свойствами, которые справедливы в окрестности этой точки. Если функция \(f(x)\) имеет предел в точке \(a\), то существует такая проколотая окрестность точки \(a\), в которой эта функция ограничена. \(\circ\) Пусть \(\displaystyle \lim_ Свойство сохранения знака предела. Если \(\displaystyle \lim_ \(\circ\) Согласно определению предела по заданному числу \(\varepsilon = \frac<|A|><2>>0\) можно найти такое число \(\delta>0\), что для всех \(x\in\dot_<\delta>(a)\) выполняется неравенство \(\displaystyle |f(x)-A| 0\), то из левого неравенства \eqref Если \(\displaystyle \lim_ \(\circ\) В силу определения предела по заданному числу \(\varepsilon=\frac<|B|><2>\) можно найти число \(\delta>0\), такое, что для всех \(x\in\dot_\delta(a)\) выполняется неравенство Если существует число \(\delta>0\) такое, что для всех \(\dot_<\delta>(a)\) выполняются неравенства \(\circ\) Воспользуемся определением предела функции по Гейне. Пусть \(\ Так как, согласно условию \eqref \(\circ\) Для доказательства этого свойства достаточно воспользоваться определением предела функции по Гейне и соответствующими свойствами пределов последовательностей. \(\bullet\) Бесконечно малые функции обладают следующими свойствами: Эти свойства легко доказать, используя определения бесконечно малой и ограниченной функции, либо с помощью определения предела функции по Гейне и свойств бесконечно малых последовательностей. Из свойства 2) следует, что произведение конечного числа бесконечно малых при \(x\rightarrow a\) функций есть бесконечно малая при \(x\rightarrow a\) функция. Из определения предела функции и определения бесконечно малой функции следует, что число \(A\) является пределом функции \(f(x)\) в точке \(a\) тогда и только тогда, когда эта функция представляется в виде Если функции \(f(x)\) и \(g(x)\) имеют конечные пределы в точке \(а\), причем \(\displaystyle \lim_ \(\circ\) Для доказательства этих свойств достаточно воспользоваться определением предела функции по Гейне и свойствами пределов последовательностей. \(\bullet\) Отметим частный случай утверждения \eqref Ранее мы уже ввели понятие монотонной функции. Докажем теорему о существовании односторонних пределов у монотонной функции. Если функция \(f\) определена и является монотонной на отрезке \([a,b]\), то в каждой точке \(x_<0>\in(a,b)\) эта функция имеет конечные пределы слева и справа, a в точках \(а\) и \(b\) — соответственно правый и левый пределы. \(\circ\) Пусть, например, функция \(f\) является возрастающей на отрезке \([a,b]\). Зафиксируем точку \(х_0\in\)(а, \(b\)]. Тогда В силу условия \eqref Если функция \(f\) определена и возрастает на отрезке \([a,b],\ x_<0>\in(a,b),\) то Теорема о пределе монотонной функции справедлива для любого конечного или бесконечного промежутка. При этом, если \(f\) — возрастающая функция, не ограниченная сверху на \((a,b)\), то \(\displaystyle \lim_ Будем говорить, что функция \(f(x)\) удовлетворяет в точке \(x=a\) условию Коши, если она определена в некоторой проколотой окрестности точки \(a\) и Пусть существует число \(\delta >0\) такое, что функция \(f(x)\) определена в проколотой \(\delta\) — окрестности точки \(a\), и пусть для каждой последовательности <\(x_n\)>, удовлетворяющей условию \(x_n\in\dot_<\delta>(a)\) при всех \(n\in\mathbb \(\circ\) Образуем последовательность Для того чтобы существовал конечный предел функции \(f(x)\) в точке \(x = a\) необходимо и достаточно, чтобы эта функция удовлетворяла в точке a условию Коши \eqref \(\circ\) Необходимость. Пусть \(\displaystyle \lim_ Теорема 3 остается в силе, если точку \(a\) заменить одним из символов \(a-0, a+0,-\infty, +\infty\); при этом условие \eqref
$$
U_<\delta>(a)=\Два определения предела функции и их эквивалентность.
Определение предела по Коши.
$$
$$
F(x) = \frac
$$
которая не определена в точке \(a\).Определение предела по Гейне.
f(x)=\sin\frac<1>
$$
не имеет предела в точке \(x=0\).Эквивалентность двух определений предела.
$$
\forall\varepsilon>0\quad \exists\delta>0:\quad\forall x\in \dot_<\delta>(a)\cap E\rightarrow|f(x)-A|Различные типы пределов.
Односторонние конечные пределы.
$$
\forall\varepsilon>0\quad\exists\delta>0:\quad\forall x\in(a-\delta,a)\rightarrow|f(x)-A_<1>| 0\quad\exists\delta>0:\ \forall x\in (a,a+\delta)\rightarrow|f(x)-A_2| 0,
\end
$$
график которой изображен на рис. 10.4 \(\displaystyle \lim_
$$
\forall\varepsilon>0\ \exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow f(x)\in[A,A+\varepsilon),
$$
то есть значения функции лежат в правой \(\varepsilon\)-полуокрестности числа \(A\), то пишут \(\displaystyle \lim_
$$
\displaystyle \<\lim_
$$
Например, для функции
$$
\varphi (x)=\left\<\begin
1-x,\ если\ x 0,
\end
$$
график которой изображен на рис. 10.5, \(\displaystyle \lim_
$$
\lim_
$$
$$
\displaystyle \<\lim_
$$Бесконечные пределы в конечной точке.
$$
\forall\varepsilon>0\quad\exists\delta>0:\ \forall x\in\dot_<\delta>(a)\rightarrow|f(x)|>\varepsilon.\label
$$
$$
\forall\varepsilon>0\quad\exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow f(x) Рис. 10.7 Рис. 10.8Предел в бесконечности.
\forall\varepsilon>0\exists\delta>0:\forall x\in U_<\delta>(+\infty)\rightarrow f(x)\in U_<\varepsilon>(A),\nonumber
$$
$$
то говорят, что число A есть предел функции f(x) при x, стремящемся к бесконечности, и пишут \(\displaystyle \lim_
$$
\forall\varepsilon>0\ \exists\delta>0:\forall x\in U_<\delta>(+\infty)\rightarrow f(x)\in U_<\varepsilon>(-\infty).\nonumber
$$
Аналогично определяются бесконечные пределы при \(x\rightarrow\infty\) и \(x\rightarrow-\infty.\)Свойства пределов функций.
Локальные свойства функции, имеющей предел.
$$
f(x)>\frac<2>>0\ для\ x\in\dot_<\delta>(a).\nonumber
$$
Если \(A Свойство 3
$$
|g(x)-B| \frac<|B|><2>\),и поэтому \(\displaystyle \frac<1> <|g(x)|>Свойство 1
$$
g(x)\leq f(x)\leq h(x),\label
$$
и если
$$
\lim_
$$
то существует \(\displaystyle \lim_
$$
g(x_
$$
то в силу свойств пределов последовательностей \(\displaystyle \lim_
$$
f(x)=A+a(x),\nonumber
$$ где \(a(x)\) — бесконечно малая при \(x\rightarrow a\) функция.Свойства пределов, связанные с арифметическими операциями.
$$
\lim_
$$
то есть постоянный множитель можно вынести за знак предела.Пределы монотонных функций.
$$
\forall x\in[a,x_<0>)\rightarrow f(x)\leq f(x_<0>).\label
$$
$$
\sup_\in[a,\ x_<0>):M-\varepsilon 0\), так как \(x_\varepsilon 0\ \exists\delta>0:\forall x\in(x_<0>-\delta,x_<0>)\rightarrow f(x)\in(M-\varepsilon,M].\nonumber
$$
Согласно определению предела слева это означает, что существует
$$
\lim_
$$
Итак,
$$
f(x_<0>-0)=\sup_
$$
f(x_<0>-0) Замечание.Критерий Коши существования предела функции.
$$
\forall\varepsilon>0\quad \exists\delta=\delta(\varepsilon)>0:\ \forall x’,x″\in \dot_<\delta>(a)\rightarrow|f(x’)-f(x″)|
$$
\lim_
$$
и
$$
\lim_
$$
где \(\widetilde
$$
x_<1>,\widetilde
$$
и обозначим k-й член этой последовательности через \(y_
$$
\forall\varepsilon>0 \ \exists\delta>0:\forall x\in\dot_<\delta>(a)\rightarrow|f(x)-A| 0\) можно найти число \(\delta=\delta_\varepsilon>0\) такое, что
$$
\forall x’,x″\in \dot_<\delta>(a)\rightarrow|f(x’)-f(x″)| 0,\) указанное в условии \eqref
$$
\forall n>N_<\varepsilon>\rightarrow 0 Замечание.