Что называется потенциалом выведите формулу потенциала точечного заряда
Потенциал поля точечного заряда:
Чтобы определить силу электрического поля, мы ввели в него пробный заряд и определили силу воздействия поля на этот заряд.
Напряженность электрического поля является характеристикой силы поля.
При введении пробного заряда в поле, оно оказывает сопротивление (рис. 7.7). Для преодоления сопротивления необходимо проделать определенную работу.
Как определяется эта выполненная работа?
Эта работа превращается в потенциальную энергию взаимодействия основного заряда и введенного пробного заряда:
Знак минус в формуле показывает, что между зарядами действует сила притяжения.
Потенциальная энергия заряда, расположенного на расстоянии от положительного неподвижного заряда , определяется следующим выражением
Положительный знак в формуле показывает, что между зарядами действует сила отталкивания.
Согласно формуле потенциальная энергия равняется нулю, когда расчет производится для бесконечного расстояния. На таких расстояниях заряды не взаимодействуют.
Таким образом, электрическое поле с приобретением характеристики силы будет иметь и энергетическую характеристику. Энергетическая характеристика поля определяется величиной, которая называется потенциалом поля.
Потенциалом электрического поля точечного заряда называется величина, измеряемая отношением потенциальной энергии взаимодействия основного и введенного в поле пробного заряда к величине пробного заряда:
Потенциал точечного заряда определяется следующим образом:
Пользуясь понятием потенциала найдем работу, совершаемую при перемещении заряда с расстояния на расстояние от заряда , создающего электрическое поле:
В этом выражении разница является разницей потенциалов между точками, называется электрическим напряжением и записывается следующим образом:
Единица измерения потенциала и разность потенциалов называется Вольт (В) в честь итальянского ученого Вольта. Из формулы следует, что .
Это значит, что разность потенциалов точек равняется 1 вольту, когда заряд, равный 1 кулону, при перемещении из одной точки электрического поля в другую выполняет работу, равную 1 Дж.
Потенциалы точек, расположенных на одинаковых расстояниях от точечного заряда, равны. Если эти точки соединить между собой, образуется поверхность, которая называется эквипотенциальной поверхностью.
Эквипотенциальная поверхность точечного заряда располагается вокруг заряда в виде сконцентрированных кругов (рис. 7.8). Силовые линии поля проходят перпендикулярно к эквипотенциальной поверхности.
Межу напряженностью электрического поля и разностью потенциалов существует следующее соотношение:
где –расстояние между точками, потенциал которых равен и .
Отсюда получаем единицу измерения напряженности поля .
Образец решения задачи:
В металлическую сферу радиусом 5 см, висящую в воздухе, подали заряд 30 нКл. Нужно найти потенциалы поля в точках, находящихся в 2 см от центра заряженной сферы, на поверхности сферы и удаленной от поверхности на расстояние 5 см.
Единица измерения:
Ответ: 5400 В; 2700 В.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Потенциал электростатического поля точечного заряда
Всего получено оценок: 215.
Всего получено оценок: 215.
Проявление электрического поля заключается в силовом взаимодействии между зарядами. Электрическое поле имеет ряд характеристик, одной из которых является потенциал. Рассмотрим это понятие, выведем формулу потенциала электростатического поля точечного заряда.
Понятие потенциала
Из курса электродинамики в 10 классе известно, что для определения взаимного влияния электрических зарядов используется понятие напряженности.
Рис. 1. Напряженность электрического поля.
Однако для электротехники такая характеристика поля неудобна. В самом деле, напряженность — это векторная величина, предполагающая движение зарядов в пространстве. Но в электротехнических схемах заряды могут двигаться только по проводникам, направление которых однозначно определено. И имеет значение только движение вдоль проводников. Здесь было бы удобнее рассматривать не векторную, а скалярную характеристику поля.
Для введения такой скалярной характеристики вспомним, что основной задачей электротехники является получение и преобразование энергии. А электрическое поле — потенциально, и работа в нем не зависит от пути, по которому двигался заряд. Важна лишь разница потенциальных энергий в конечных точках траектории.
Все это позволяет ввести специальную энергетическую характеристику электростатического поля — потенциал.
Потенциальная энергия взаимодействия двух зарядов равна:
Как и в случае с потенциальной энергией, конкретная величина потенциала не несет большой информации. Практически всегда используется разность потенциалов между двумя точками. Зная ее, можно рассчитать работу, которую совершает заряд при движении от одной точки к другой.
Потенциал поля точечного заряда
Из двух приведенных выше формул легко получить формулу потенциала точечного заряда. Подставив первую во вторую, получим:
Потенциал системы точечных зарядов
Поскольку электрическое поле потенциально, и в нём действует принцип суперпозиции, это позволяет легко находить потенциал системы зарядов. Он равен алгебраической сумме элементарных зарядов:
Эта же формула используется в том случае, если заряд распределен по телу неравномерно. Тело разбивается на множество элементарных областей, в каждой из которых заряд можно считать точечным. После этого потенциал всех областей суммируется.
Рис. 3. Потенциал системы зарядов.
Что мы узнали
Электростатический потенциал — это скалярная энергетическая характеристика электростатического поля. Она равна работе, которую надо совершить для того, чтобы удалить пробный единичный заряд из поля в бесконечность. Поскольку электрическое поле потенциально, и в нём работает принцип суперпозиции, потенциал системы точечных зарядов равен сумме потенциалов каждого заряда.
Потенциал. Разность потенциалов.
Разность потенциалов (напряжение) между 2-мя точками поля равняется отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:
,
Так как работа по перемещению заряда в потенциальном поле не зависит от формы траектории, то, зная напряжение между двумя точками, мы определим работу, которая совершается полем по перемещению единичного заряда.
Если есть несколько точечных зарядов, значит, потенциал поля в некоторой точке пространства определяется как алгебраическая сумма потенциалов электрических полей каждого заряда в данной точке:
.
Эквипотенциальной поверхностью, или поверхностью равного потенциала, является поверхность, для любых точек которой разность потенциалов равна нулю. Это означяет, что работа по перемещению заряда по такой поверхности равна нулю, следовательно, линии напряженности электрического поля перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности однородного поля представляют собой плоскости, а точечного заряда — концентрические сферы.
Вектор напряженности (как и сила ) перпендикулярен эквипотенциальным поверхностям. Эквипотенциальной является поверхность любого проводника в электростатическом поле, так как силовые линии перпендикулярны поверхности проводника. Внутри проводника разность потенциалов между любыми его точками равна нулю.
В однородном электрическом поле напряженность E в каждой точке одинакова, и работа A по перемещению заряда q параллельно на расстояние d между двумя точками с потенциалами φ1, и φ2 равна:
,
.
Т.о., напряженность поля пропорциональна разности потенциалов и направлена в сторону уменьшения потенциала. Поэтому положительный заряд будет двигаться в сторону уменьшения потенциала, а отрицательный — в сторону его увеличения.
Единицей напряжения (разности потенциалов) является вольт. Исходя из формулы , , разность потенциалов между двумя точками равна одному вольту, если при перемещении заряда в 1 Кл между этими точками поле совершает работу в 1 Дж.
Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности
Потенциал. Разность потенциалов. Напряжение.
Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:
— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
— следствие принципа суперпозиции полей (потенциалы складываютсяалгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
В СИ потенциал измеряется в вольтах:
Разность потенциалов
Напряжение — разность значений потенциала в начальной и конечнойточках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.
Разность потенциалов (напряжение) не зависит от выбора
Единица разности потенциалов
Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
Связь между напряженностью и напряжением.
Из доказанного выше: →
напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).
Из этого соотношения видно:
Эквипотенциальные поверхности.
— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;
— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.
Измерение электрического напряжения (разности потенциалов)
Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.
Потенциальная энергия взаимодействия зарядов.
Потенциал поля точечного заряда
Потенциал заряженного шара
а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.
б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.
Перераспределение зарядов при контакте заряженных проводников.
Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.
Потенциал электростатического поля точечного заряда – формула, кратко о разности потенциалов (10 класс)
Проявление электрического поля заключается в силовом взаимодействии между зарядами. Электрическое поле имеет ряд характеристик, одной из которых является потенциал. Рассмотрим это понятие, выведем формулу потенциала электростатического поля точечного заряда.
Понятие потенциала
Из курса электродинамики в 10 классе известно, что для определения взаимного влияния электрических зарядов используется понятие напряженности.
Рис. 1. Напряженность электрического поля.
Однако для электротехники такая характеристика поля неудобна. В самом деле, напряженность — это векторная величина, предполагающая движение зарядов в пространстве. Но в электротехнических схемах заряды могут двигаться только по проводникам, направление которых однозначно определено. И имеет значение только движение вдоль проводников. Здесь было бы удобнее рассматривать не векторную, а скалярную характеристику поля.
Для введения такой скалярной характеристики вспомним, что основной задачей электротехники является получение и преобразование энергии. А электрическое поле — потенциально, и работа в нем не зависит от пути, по которому двигался заряд. Важна лишь разница потенциальных энергий в конечных точках траектории.
Все это позволяет ввести специальную энергетическую характеристику электростатического поля — потенциал.
Потенциальная энергия взаимодействия двух зарядов равна:
Как и в случае с потенциальной энергией, конкретная величина потенциала не несет большой информации. Практически всегда используется разность потенциалов между двумя точками. Зная ее, можно рассчитать работу, которую совершает заряд при движении от одной точки к другой.
Потенциал поля точечного заряда
Из двух приведенных выше формул легко получить формулу потенциала точечного заряда. Подставив первую во вторую, получим:
Рис. 2. Силовые линии точечного заряда.
Потенциал системы точечных зарядов
Поскольку электрическое поле потенциально, и в нём действует принцип суперпозиции, это позволяет легко находить потенциал системы зарядов. Он равен алгебраической сумме элементарных зарядов:
Эта же формула используется в том случае, если заряд распределен по телу неравномерно. Тело разбивается на множество элементарных областей, в каждой из которых заряд можно считать точечным. После этого потенциал всех областей суммируется.
Рис. 3. Потенциал системы зарядов.
Что мы узнали
Электростатический потенциал — это скалярная энергетическая характеристика электростатического поля. Она равна работе, которую надо совершить для того, чтобы удалить пробный единичный заряд из поля в бесконечность. Поскольку электрическое поле потенциально, и в нём работает принцип суперпозиции, потенциал системы точечных зарядов равен сумме потенциалов каждого заряда.