Что называется периметром треугольника
Как найти периметр фигуры
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение периметра
Периметр — это сумма длин всех сторон многоугольника.
Какой буквой обозначается периметр? Заглавной латинской P. Под обозначением P удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах по ходу решения.
В чем измеряется периметр? В тех же единицах измерения, что и длина — например, миллиметр, сантиметр, метр, фут, дюйм, локоть и др.
Если в условиях задачки длины сторон переданы в разных единицах длины, мы не сможем узнать периметр фигуры. Для правильного решения нужно перевести все данные в одну единицу измерения.
Формулы нахождения периметра
Как мы только что узнали, периметр — это сумма длин всех сторон многоугольника. А значит, чтобы его найти, нам надо знать длины этих сторон. Давайте посмотрим, как найти периметр, на примерах нескольких фигур.
Равносторонний многоугольник
У равностороннего треугольника все стороны равны. А значит, периметр равностороннего треугольника можно найти как произведение длины стороны на их количество, т. е. на 3.
P = 3 ⋅ a, где a — длина стороны.
Периметр любого другого равностороннего многоугольника можно найти тем же способом: умножив длину его стороны на их количество. Например, у квадрата и ромба все стороны равны, а значит, их периметр можно найти по формуле P = 4 ⋅ a, где a — длина стороны.
А формула для любого равностороннего n-угольника будет такая: P = n ⋅ a, где a — длина стороны, n — количество сторон.
Прямоугольник и параллелограмм
У прямоугольника и параллелограмма противоположные стороны равны, а значит, найти их периметр легко, зная две соседние стороны.
P = 2 ⋅ (a + b), где a — одна сторона, b — соседняя сторона.
Окружность
У окружности нет периметра, потому что это не многоугольник. Но у нее есть длина, которую можно найти, зная радиус. Длина окружности — это произведение пи на два радиуса или произведение пи на диаметр.
L = d ⋅ π = 2 ⋅ r ⋅ π, где d — диаметр, r — радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она приблизительно равна 3,14.
Можно выучить все формулы, а можно, запомнив определение о сумме всех сторон, каждый раз проявлять смекалку и вычислять самостоятельно. Давайте потренируемся, как определять периметр фигур!
Решение задач
Равнобедренный треугольник имеет периметр 40 см, длина его основания составляет 6 см. Какую длину будут иметь две другие стороны?
Ответ: две другие стороны равны по 17 см.
Радиус окружности равен периметру равностороннего пятиугольника со стороной 4 см. Найдите длину окружности.
Еще больше практических заданий — на курсах по математике в онлайн-школе Skysmart!
Как найти периметр треугольника
Прежде чем ответить на вопрос о том, как найти периметр треугольника, повторим, что называется периметром треугольника.
Определение.
Периметром треугольника называется сумма длин его сторон.
Формула периметра треугольника для треугольника АВС
Если назвать треугольник другими буквами, формула периметра треугольника, соответственно, тоже будет выглядеть иначе.
Например, формула периметра треугольника MNP:
В общем виде формулу периметра треугольника записывают так:
где а, b и с — длины сторон треугольника.
Таким образом, чтобы найти периметр треугольника, надо сложить длины всех его сторон.
1) Найти периметр треугольника со сторонами 3 см, 4 см, 5 см.
По формуле для нахождения периметра треугольника
2) Найти периметр треугольника АВС, если АВ=10 см, ВС=12 см, АС=15 см.
Как найти периметр треугольников отдельных видов — равнобедренного и равностороннего — мы посмотрим позже.
Как найти периметр треугольника
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение
Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской буквой P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах и ходе решении.
Важно, чтобы все параметры были переданы в одной единице длины, иначе мы не сможем подсчитать результат. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
В чем измеряется периметр:
Как узнать периметр треугольника
Рассмотрим какие существуют формулы, и при каких известных исходных данных их можно применять.
Если известны три стороны, то периметр треугольника равен их сумме. Этот способ проходят во втором классе.
P = a + b + c, где a, b, c — длина стороны.
Если известна площадь и радиус вписанной окружности:
P = 2 * S : r, где S — площадь, r — радиус вписанной окружности.
Если известны две стороны и угол между ними, вычислить периметр треугольника можно так:
Если известна одна сторона в равностороннем треугольнике:
P = 3 * a, где a — длина стороны.
Все стороны в равносторонней фигуре равны.
Если известна боковая сторона и основание в равнобедренном треугольнике:
P = 2 * a + b, где a — боковая сторона, b — основание.
Боковые стороны в равнобедренной фигуре равны.
Если известна боковая сторона и высота в равнобедренном треугольнике:
P = 2 * (√ a 2 + h 2 ) + 2 * a, где a — боковая сторона, h — высота.
Высотой принято называть отрезок, который вышел из вершины и опустился на основание. В равнобедренной фигуре высота делит основание пополам.
Если известны катеты в прямоугольном треугольнике:
P = √ a 2 + b 2 + (a + b), где a, b — катеты.
Катет — одна из двух сторон, которые образуют прямой угол.
Если известны катет и гипотенуза в прямоугольном треугольнике:
Гипотенуза — сторона, которая лежит напротив прямого угла.
Скачать онлайн таблицу
У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.
Периметры фигур. Периметр треугольника.
имеет ту же размерность величин, что и длина.
буквами, соответствующими обозначению противоположных вершин.
Периметр треугольника равен сумме длин его сторон, общая формула:
Формула периметра треугольника для треугольника АВС:
Периметр равностороннего треугольника.
Чтобы найти периметр равностороннего треугольника (или найти периметр правильного
треугольника), нужно знать его сторону.
В общем случае для нахождения периметра треугольника используют формулу:
Поскольку в равностороннем треугольнике все три стороны равны, формула упрощается:
Таким образом, периметр равностороннего треугольника находится по такой формуле:
где а — длина его стороны.
Периметр равнобедренного треугольника.
Чтобы найти периметр равнобедренного треугольника, нужно знать всего две его стороны — основание
Поскольку у равнобедренного треугольника две стороны равны (боковые), найти периметр
равнобедренного треугольника можно по такой формуле:
То есть, периметр равнобедренного треугольника равен сумме длин основания и
Геометрия. 7 класс
Конспект урока
Перечень рассматриваемых вопросов:
Треугольник – геометрическая фигура, образованная тремя точками, не лежащими на одной прямой, которые соединены между собой отрезками.
Периметр треугольника – это сумма длин всех его сторон.
Стороны треугольника– отрезки, соединяющие вершины треугольника.
Равные треугольники –треугольники, которые можно совместить наложением.
1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
Теоретический материал для самостоятельного изучения.
Вы уже познакомились с основными геометрическими фигурами:
Рассмотрим геометрическую фигуру, которая также является одной из основополагающих– треугольник.
Треугольник – геометрическая фигура, образованная тремя точками, не лежащими на одной прямой, которые соединены между собой отрезками.
Точки, с которых начиналось построение, называются вершинами треугольника.
Отрезки, соединяющие вершины треугольника, называются сторонами треугольника.
А, В, С – вершины треугольника АВС.
АВ, ВС, СА – стороны треугольника АВС.
∠А,∠В,∠С – углы треугольника АВС.
Периметр треугольника – это сумма длин всех его сторон.
Рассмотрим виды треугольников.
Их можно разделить по виду и соотношению углов, а также по соотношению сторон.
По углам треугольник может быть:
– остроугольным, если все его углы являются острыми, (т.е. меньше 90°).
– тупоугольным, если один из его углов тупой(т.е. больше 90°).
– прямоугольным, если один угол 90° (т.е. прямой).
По сторонам треугольник бывает:
– разносторонний, если все его стороны имеют различную длину;
– равнобедренный, если две его стороны равны между собой;
– равносторонний,если у него все три стороны равны между собой.
Напомним, что две фигуры, в том числе и треугольник, можно сравнить. ∆ АВС = ∆ А1В1С1
Два треугольника называются равными, если их можно совместить наложением. При этом попарно совмещаются вершины, углы и стороны треугольников.
Следует помнить, что если два треугольника равны, то элементы (стороны и углы) одного треугольника соответственно равны элементам (сторонам и углам) другого треугольника.
Свойство равных треугольников.
В равных треугольниках против соответственно равных сторон лежат равные углы. Обратное утверждение тоже верно: против соответственно равных углов лежат равные стороны.
Равенство треугольников также можно установить, не производя наложения фигур друг на друга, а сравнивая лишь некоторые элементы этих фигур. Это станет возможным при изучении признаков равенства треугольников.
Внешний угол треугольника.
Введём определение внешнего угла треугольника.
Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.
У каждого угла треугольника есть два угла, смежных с ним, т.е. у треугольника шесть внешних углов.
Отметим, что при одной вершине внешние углы равны, как вертикальные.
Разбор решения заданий тренировочного модуля.
Найдите градусную меру внешнего ∠В, треугольника АВС, если ∠АВС = 60°.
По рисунку видно, что угол В внешний угол треугольника и он является смежным к углу АВС, следовательно, их сумма равна 180°.
∠В = 180° – ∠АВС = 180° – 60° = 120°
Периметр ∆АВС равен 58 см, сторона АВ = 20 см, сторона ВС >АС на 5 см. Найдите стороны ВС и АС.
Решение: Для решения задачи воспользуемся формулой периметра треугольника Р∆АВС = АВ + ВС + АС. Обозначим сторону АС за х, тогда сторона ВС равна х + 5, составим уравнение.
5. х = 16,5 см – сторона АС.
6. 16,5 + 5 = 21,5 см – сторона ВС.