Что называется относительным сужением

Относительное удлинение и сужение после разрыва образца

Полное удлинение, полученное образцом после разрушения, умень-шится после разрыва, так как в его частях исчезнут упругие деформации. Относительным удлинением после разрыва δ называют отношение в про-центах прироста расчетной длины образца после разрыва к его начальной длине:

Что называется относительным сужением(2.6)

Относительное сужение образца после разрыва ψ определяется отно-шением абсолютного уменьшения площади поперечного сечения образца в процентах к начальной площади поперечного сечения:

Что называется относительным сужением(2.7)

Относительное удлинение δ и относительное сужение ψ характери- Что называется относительным сужениемзуют пластичность материала и есть условными, так как удлинение и сужение относятся к первичной длине и к первичной площади образца. В действительности пластическая деформация развивается на непрерывно изменяющейся длине образца. Обозначив d Что называется относительным сужениемувеличение длины образца в данный момент испытания, находим истинное (действительное) удлинение:

Что называется относительным сужением(2.8)

где δ = D Что называется относительным сужением/ Что называется относительным сужением0.

При разложении правой части в ряд по степеням δ получим:

При малых изменениях δ условная и соответствующая ей действительная деформация практически совпадают. Так, при δ = 10% Что называется относительным сужением= 9,95%.

Подобным образом определяем действительное сужение:

Что называется относительным сужением Что называется относительным сужением(2.9)

Любое увеличение длины относительно исходной базы образца вы-зовет соответствующее уменьшение диаметра базы образца.

Необходимость определения соответствующей действительной де-формации вытекает из факта, что она в любой заданный момент времени зависит от длины базы образца Что называется относительным сужениемі в тот же момент времени. Таким обра-зом, фиксированное изменение длины D Что называется относительным сужениемі приводит к постоянно умень-шаемому увеличению деформации, так как длина базы образца Что называется относительным сужениемі в этот момент времени возрастает с каждым дополнительным увеличением D Что называется относительным сужением.

Кроме того, возможно определение действительной деформации стержня, если рассмотреть полное изменение его длины независимо от того, была ли эта деформация за счет одноразового растяжения или набором последовательных приложений нагрузки, то есть

где Что называется относительным сужениемобщ – деформация при многоразовом прикладывании нагрузки.

Пример: растяжение стержня в два приема.

Что называется относительным сужением,

а при сложении действительных деформаций ( Что называется относительным сужением1 + Что называется относительным сужением2) полная относи-тельная деформация Что называется относительным сужениемполн будет равняться Что называется относительным сужениемобщ:

Деформации безразмерные. Отношение абсолютной продольной деформации элемента к его начальной длине в направлении оси Х носит название относительной продольной деформацией:

Что называется относительным сужением. (2.10)

Отношение абсолютной поперечной деформации элемента к его начальному поперечному размеру носит название относительной попе-речной деформацией (рис.2.3):

Что называется относительным сужением Что называется относительным сужением(2.11)

Коэффициент Пуассона Что называется относительным сужением– абсолютное значение отношения отно-сительной поперечной деформации к относительной продольной деформа-ции при растяжении или сжатии на участке упругости, на котором дейст-вует закон Гука:

Что называется относительным сужением(2.12)

Что называется относительным сужением

Что называется относительным сужениемРисунок 2.3 – Поперечные деформации стержня

Коэффициент поперечной деформации (коэффициент Пуассона) в пределах упругих деформаций:

μупр = Что называется относительным сужениемпоп / Что называется относительным сужениемпрод = (0,25. 0,30); Что называется относительным сужениемпоп = –μупр Что называется относительным сужениемпрод.

Полная деформация состоит из упругой и пластической:

За пределом упругости увеличение продольных пластических дефор-маций вызовет поперечную деформацию с коэффициентом 0,5, в то время как увеличение упругих деформаций продолжает вызывать поперечные деформации с коэффициентом μ. За пределом упругости поперечная де-формация определяется по формуле

Что называется относительным сужениемпоп = – (μ Что называется относительным сужениемпрод +0,5 Что называется относительным сужениемпл). (2.14)

Так как коэффициент Пуассона за пределом упругости μ’ изменяет-ся по мере роста пластической деформации от μ до 0,5 (рис.2.4), то с рос-том пластической деформации отношение Что называется относительным сужениемпл / Что называется относительным сужениемполн стремится к едини- це, в то время как Что называется относительным сужениемупр / Что называется относительным сужениемполн стремится к нулю.

Что называется относительным сужением. (2.15)

Секущий модуль, являющийся по аналогии с модулем упругости от-ношением Что называется относительным сужением, обозначается Что называется относительным сужением(см.рис.2.4). По мере роста пластической деформации он уменьшается, так как уменьшается угол Что называется относительным сужением, образованный лучом ОА и осью Что называется относительным сужением.

Что называется относительным сужениемЧто называется относительным сужением

Рисунок 2.4 – Диаграмма растяжения и графические зависимости коэффициента поперечной деформации от величины полной деформации

Закон неизменяемости объема металла при пластической деформации:

Что называется относительным сужениемхпл + Что называется относительным сужениемупл + Что называется относительным сужениемzпл = 0, (2.16)

где Что называется относительным сужениемхпл, Что называется относительным сужениемупл,, Что называется относительным сужениемzпл – соответствующие действительные пластичес-кие деформации в направлении координатных осей X,Y,Z.

Источник

Механические свойства

Что называется относительным сужением Что называется относительным сужением Что называется относительным сужением Что называется относительным сужением

Что называется относительным сужением

Что называется относительным сужением

Химические свойства.

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.

Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими пли окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Что называется относительным сужением

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства: прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сил (нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.

Напряжение — величина нагрузки, отнесенная к единице площади поперечного сечения испытуемого образца. Деформация — изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Различают деформации растяжения (сжатия), изгиба, кручения, среза. В действительности материал может подвергаться одному или нескольким видам деформации одновременно.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение (ГОСТ 1497—73), Испытания, проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения. По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат — нагрузки, приложенные к образцу.

Что называется относительным сужениемЧто называется относительным сужением

Площадку текучести имеют в основном только малоуглеродистая сталь и латуни. Другие сплавы площадки текучести не имеют. Для таких материалов определяют предел текучести (условный), при котором остаточное удлинение достигает 0,2% от расчетной длины образца: s0,2=Р0,2/Fо.

Упругость— способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки Руп оце­нивают пределом пропорциональности sпц и пределом упругости sуп.

Передел пропорциональности sпц — напряжение (МПа), выше которого нарушается пропорциональность между прилагаемым напря­жением и деформацией образца Рпц/Fо

Что называется относительным сужением

Пластичность, т. е. способность материала принимать новую форму и размеры под действием внешних сил не разрушаясь, характери­зуется относительным удлинением и относительным сужением.

Относительное удлинение (после разрыва) δ — это отношение приращения (lк—l0) расчетной длины образца после разрыва к его первоначальной расчетной длине 1о, выраженное в процентах: δ=[(lк-10)/1о]100%.

Чем больше значения относительного удлинения и сужения для материала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицательным свойством.

Ударная вязкость, т. е. способность материала сопротивляться динамическим нагрузкам, определяется как отношение затраченной на излом образца работы W (в МДж) к площади его поперечного сечения F (в м2) в месте надреза КС = W/F.

Для испытания (ГОСТ 9454—78)изготовляют специальные стандартные образцы, имеющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа.

Циклическая вязкость — это способность материалов поглощать энергию при повторно-переменных нагрузках. Материалы с высокой циклической вязкостью быстро гасят вибрации, которые часто являются причиной преждевременного разрушения. Например, чугун, имею­щий высокую циклическую вязкость, в некоторых случаях (для станин и других корпусных деталей) является более ценным материалом, чем углеродистая сталь.

Твердостью называют способность материала сопротивляться проникновению в него другого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют способами Бринелля, Роквелла и Виккерса (рис. 10). Что называется относительным сужением

За меру твердости НВ принимают отношение нагрузки к площади поверхности отпечатка диаметром d и глубиной t,который образуется при вдавливании силой Р шарика диаметра D.

Числовое значение твердости определяют так: измеряют диаметр отпечатка с помощью оптической лупы (с делениями) и по полученному значению находят в таблице, приложенной к ГОСТу, соответствующее число твердости.

Преимущество способа Бринелля заключается в простоте испытания и точности получаемых результатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, например закаленной стали, так как при измерении шарик деформируется и показания искажаются.

Для испытания твердых материалов применяют способ Роквелла (ГОСТ 9013—59). В образец вдавливают алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1′,59 мм. Твердость по Роквеллу измеряется в условных единицах. Условная ве­личина единицы твердости соответствует осевому перемещению наконечника на 0,002 мм. Испытание проводят на приборе ТК. Значение твердости определяется по глубине отпечатка h и отсчитывают по циферблату индикатора, установленному на приборе. Во всех случаях предварительная нагрузка Р0 равна 100 Н.

При испытании металлов с высокой твердостью применяют алмазный конус и общую нагрузку Р= Р01 = 1500 Н. Твердость отсчитыва­ют по шкале «С» и обозначают НRС.

Если при испытании берется стальной шарик иобщая нагрузка 1000 Н, то твердость отсчитывается по шкале «В» и обозначается HRB.

При испытании очень твердых или тонких изделий используют алмазный конус и общую нагрузку 600 Н Твердость отсчитывается по шкале «А» и обозначается НRА. Пример обозначения твердости по Роквеллу: НRС 50 — твердость 50 по шкале «С».

При определении твердости способом Виккерса (ГОСТ 2999—75) в качестве вдавливаемого в материал наконечника используют четы­рехгранную алмазную пирамиду с углом при вершине 136°. При испытаниях применяют нагрузки от 50 до 1000 Н (меньшие значения на­грузки для определения твердости тонких изделий и твердых, упрочненных поверхностных слоев металла). Числовое значение твердости определяют так: замеряют длины обеих диагоналей отпечатка после снятия нагрузки и с помощью микроскопа и по полученному среднему арифметическому значению длины диагонали находят в таблице соответствующее число твердости. Пример обозначения твердости по Виккерсу — НV 500.

Для оценки твердости металлов в малых объемах, например, на зернах металла или его структурных составляющих применяют способ определения микротвердости. Наконечник (индентор) прибора представляет собой алмазную четырехгранную пирамиду (с углом при вер­шине 136°, таким же, как и у пирамиды при испытании по Виккерсу). Нагрузка на индентор невелика и составляет 0,05—5 Н, а размер отпечатка 5—30 мкм. Испытание проводят на оптическом микроскопе ПМТ-З, снабженном механизмом нагружения. Микротвердость оценивают по величине диагонали отпечатка.

Усталостью называют процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обусловлена концентрацией напряжений в отдельных его объемах, в ко­торых имеются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся после разрушения образца в результате многократного нагружения и состоящий из двух разных по внешнему виду частей. Одна часть I излома с ровной (затертой), поверхностью образуется вследствие-трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая

Источник

Образовательный портал

К механическим свойствам металлов относят их способность сопротивляться деформациям (изменению формы или размеров) и разрушению под действием внешних нагрузок. Такими свойствами являются прочность, пластичность, твердость, вязкость (ударная), усталость, ползучесть.

Деформации, которые исчезают после снятия нагрузки, при этом материал принимает первоначальную форму, называют упругими. Деформации, которые остаются после снятия нагрузки, называют остаточными.

Для определения механических свойств материалов специальные образцы или готовые изделия испытывают в соответствии с требованиями ГОСТов. Испытания образцов могут быть статическими, когда на образец действует постоянная или медленно возрастающая нагрузка, динамическими, когда на образец действует мгновенно возрастающая (ударная) нагрузка, и повторно-переменными (усталостными), при которых нагрузка на образец многократно изменяется по величине и направлению.

В зависимости от характера действия приложенных к образцу или изделию сил (нагрузок) различают деформации сжатия, растяжения, изгиба, сдвига (среза), кручения.

Что называется относительным сужением

Виды деформаций металла в зависимости от направления действующей нагрузки:

а — сжатия, б — растяжения, в — изгиба, г — сдвига (среза), д — кручения

Механические свойства оцениваются численным значением напряжения.

Напряжение — мера внутренних сил, возникающих в образце под влиянием внешних воздействий (сил, нагрузок).

Напряжение служит для оценки нагрузки, не зависящей от размеров деформируемого тела. Напряжения, действующие вдоль оси образца, называют нормальными и обозначают буквой σ (сигма).

Нормальные напряжения определяются отношением сил, действующих вдоль оси детали или образца, к площади их поперечного сечения:

σ = P/F,

где σ — нормальное напряжение, Па (1 Па = H/м²; 1 кгс/см² = 10 5 Па);

P — сила, действующая вдоль оси образца, H;

F — площадь поперечного сечения образца, м².

Нормальные напряжения в зависимости от направления действующих нагрузок бывают сжимающими и растягивающими.

Напряжения, действующие перпендикулярно оси образца, называют касательными и обозначают буквой τ.

Под действием касательных напряжений происходит деформация среза.

Напряжения определяют при механических испытаниях образцов на специальных машинах. Эти напряжения используют при расчетах деталей машин на прочность.

Усилия, нагрузки, действующие на детали, создают в них напряжения, которые в свою очередь вызывают деформацией деталей.

Например, канат автомобильного крана при поднятии груза под действием растягивающей нагрузки испытывает напряжение растяжения, поэтому и подвергается деформации растяжения. Под действием сжимающих напряжений деформацию сжатия испытывают станины и фундаменты станков, опорные колонны, колеса и катки машин. В стреле автомобильного или башенного крана, поднимающего груз, возникают напряжения изгиба, которые вызывают деформацию изгиба стрелы. Деформации изгиба испытывают балки, на которые положен груз, рельсы под тяжестью
поезда, башенного или козлового крана. На срез работают заклепочные соединения, стопорные болты.

Напряжения кручения вызывают деформацию кручения, например, когда у стяжных болтов
затягивают гайки.

Прочность — способность металлов или сплавов сопротивляться разрушению при действии внешних сил, вызывающих внутренние напряжения и деформации.
В зависимости от характера действия внешних сил различают прочность на растяжение, сжатие, изгиб, кручение, ползучесть и усталость.

Определение характеристик прочности при растяжении — наиболее важный и распространенный вид механических испытаний металлов. Испытывают образцы определенной формы и размеров на специальных разрывных машинах (ГОСТ 1497—73). Стандартный образец (рис. Стандартный образец для испытания на растяжение) закрепляют головками в машине и медленно нагружают с постоянной скоростью.

Что называется относительным сужением

В результате возрастающей нагрузки происходит растяжение образца вплоть до разрушения.
При испытании производится автоматическая запись диаграммы растяжения, представляющей собой график изменения абсолютной длины образца в зависимости от приложенной нагрузки.

Что называется относительным сужением

Определенные точки на диаграмме растяжения p, c, s, b отражают наиболее важные характеристики прочности: предел пропорциональности, условные пределы упругости, текучести и прочности.

Предел пропорциональности σ пц (точка p на диаграмме растяжения) — это наибольшее напряжение, возникающее под действием нагрузки P пц, до которого деформации в металле растут прямо пропорционально нагрузке. При этом в образце происходят только упругие деформации, т.е. образец после снятия нагрузки принимает свои первоначальные размеры. При дальнейшем увеличении нагрузки деформации образца будут остаточными.

Условный предел упругости σ 0,05 (точка c на диаграмме растяжения) — это напряжение, при котором образец получает остаточное удлинение, равное 0,05% первоначальной длины образца.

Практически предел упругости очень близок пределу пропорциональности.

Условный предел текучести (точка s на диаграмме растяжения) — это напряжение, при котором остаточное
удлинение достигает заданного значения, обычно 0,2%, но иногда 0,1 или 0,3% и более при нагрузках Рt.

В соответствии с этим условный предел текучести обозначается σ 0,2, σ о,1, σ 0,3 и т. д.

Следовательно, условный предел текучести отличается от условного предела упругости только заданным значением остаточного удлинения.
Условный предел текучести соответствует напряжению, при котором происходит наиболее полный переход к пластической деформации металла.

Условный предел прочности σ в (точка b на диаграмме растяжения) — это условное наибольшее напряжение, при котором происходит наибольшая равномерная по всей длине деформация образца.

После точки s на участке sb диаграммы растяжения при дальнейшем увеличении нагрузки в образце развивается интенсивная пластическая деформация. До точки b образец удлиняется равномерно по всей длине. В точке b начинается резкое уменьшение поперечного сечения образца на коротком участке с образованием так называемой шейки.

Предел прочности определяют по формуле:

σ в = Pв/Fo,

где σ в — предел прочности материала, Па;

Pв — нагрузка в точке b, H;

Fo — площадь поперечного сечения образца до испытания, м².

Характеристиками прочности пользуются при изготовлении деталей машин. Практическое значение пределов пропорциональности, упругости и текучести сводится к тому, чтобы определить численное значение напряжений, под действием которых могут работать детали машинах, не подвергаясь остаточной деформации (предел пропорциональности) или подвергаясь деформации на небольшую допустимую величину σ 0,о5, σ о,2 и т. д.

Пластичность — способность металлов сохранять изменение формы, вызванное действием деформирующих сил после того, как силы сняты.

Пластические свойства испытываемого образца металла определяют при испытаниях на растяжение. Под действием нагрузки образцы удлиняются, при этом поперечное сечение их соответственно уменьшается. Чем больше удлиняется образец при испытании, тем более пластичен материал. Характеристиками пластичности материалов служат относительное удлинение и относительное сужение образцов.

Относительным удлинением называется отношение приращения длины образца после разрыва к его перво-
начальной длине.

Относительное удлинение δ (дельта) выражают в процентах и вычисляют по формуле:

δ = [ (l1 — l0)/l0 ] • 100%

где l1 — длина образца после разрыва, м;

l0 — длина образца до начала испытания, м.

Относительным сужением называется отношение уменьшения площади поперечного сечения образца после разрыва к площади поперечного сечения образца до начала испытания.

Относительное сужение ψ (пси) выражают в процентах и вычисляют по формуле

ψ = [ (F0 — F1)/F0 ] • 100%

где F0 — площадь поперечного сечения образца до начала испытания, м²;

F1 — площадь поперечного сечения образца после разрыва, м².

Твердость — сопротивление поверхностных слоев материала местным деформациям.

Твердость обычно оценивается сопротивлением вдавливанию в поверхность металла индикатора из более твердого материала.

Измерение твердости металлов и сплавов как метод щенки их механических свойств широко используется в технике.
По твердости судят о других свойствах металла и сплава. Например, для многих сплавов, чем выше твердость, тем больше прочность на растяжение, выше износостойкость; как правило, сплавы с меньшей твердостью легче обрабатываются резанием.

Твердость определяют непосредственно на деталях без их разрушения. Поэтому испытание на твердость является незаменимым производственным методом оценки механических свойств материалов.

На практике в зависимости от используемого прибора твердость определяют двумя способами. Если твердость исследуемого материала меньше, чем твердость закаленной стали, то используют твердомер шариковый — ТШ, если твердость исследуемого материала больше, чем твердость закаленной стали, то пользуются твердомером конусным — ТК.

При определении твердости по Бринеллю на приборах ТШ (ГОСТ 9012—59) стальной закаленный шарик диаметром D (2,5; 5 или 10 мм) вдавливают в испытуемый металл под действием нагрузки P в течение определенного времени.

Что называется относительным сужением

После удаления нагрузки на поверхности испытуемого металла остается отпечаток.
Измерив под микроскопом диаметр отпечатка а, по таблицам стандарта определяют твердость металла.
Отношение приложенной к шарику нагрузки (кгс) к площади поверхности отпечатка шарика (мм²) называется числом твердости по Бринеллю и обозначается HB.

Если на шарик диаметром 0-10 мм действует нагрузка Р=3000 кгс в течение 10 с, то определяемое по таблицам число твердости по Бринеллю записывают так: HВ400, HВ250, HВ500 и т. д.

При других условиях испытания к обозначению НВ добавляют цифры, характеризующие диаметр шарика (мм), нагрузку (кгс) и продолжительность выдержки (с).

Например, HВ5/750/30—350 обозначает, что число твердости по Бринеллю равно 350 при испытании вдавливанием шарика диаметром D = 5 мм под нагрузкой Р = 750 кгс в течение t = 30 с.

При определении твердости по Роквеллу на приборах ТК (ГОСТ 9013—59) алмазный конус с углом при вершине 120° вдавливают в испытуемый металл сначала под действием предварительной нагрузки Р0, равной
10 кгс, которая не снимается до конца испытания.

Что называется относительным сужением

Под нагрузкой Р0 алмазный конус вдавливается на глубину h0. Затем к предварительной нагрузке добавляется основная нагрузка Р1, равная 140 или 50 кгс — для очень твердых и хрупких материалов. Алмазный конус вдавливается на глубину h1. Через 1 — 3 с, после того как стрелка прибора замедлит свое движение, основную нагрузку снимают. Стрелка прибора показывает на шкале твердость металла в условных единицах.

За условную единицу твердости по Роквеллу принимается глубина вдавливания алмазного конуса на величину 0,002 мм ≈ h0. Все шкалы прибора отградуированы в безразмерных условных единицах твердости.

Твердость, определяемая на приборах ТК. методом вдавливания алмазного конуса, называется твердостью по Роквеллу и обозначается НR. Отсчет твердости ведут по двум шкалам в зависимости от применяемой общей нагрузки Р.

Если Р = Р0 + Р1= 10 + 140= 150 кгс, то отсчет твердости ведут по шкале С и твердость обозначают НРС, если Р = Ро+Р1 = 10+50 = 60 кгс, то отсчет твердости ведут также по шкале С, но твердость обозначают НРА.

Если необходимо измерить твердость по Роквеллу мягких материалов, то алмазный конус заменяют шариком диаметром 1,6 мм. Основная нагрузка Р1 = 90 кгс, значит, общая нагрузка Р = Р0 + Р1 = 10 + 90 = 100 кгс.

Отсчет твердости ведут по специальной шкале B, а твердость обозначают НRB.

Твердость по Роквеллу НR записывают таким образом:
HRC65, HRB30, HRA80 и т. д., где цифры обозначают твердость, а буквы А, С, В — соответствующую шкалу.

Ударная вязкость — способность металлов сопротивляться действию ударных нагрузок. При ударных нагрузках напряжения, возникающие в металле, действуют мгновенно, поэтому их трудно определить. Ударную вязкость определяют работой, затраченной на излом образца.

Для определения ударной вязкости при нормальной температуре (ГОСТ 9454—78) предусмотрено 20 типоразмеров образцов квадратного и прямоугольного сечения. Чаще применяют образцы квадратного сечения 10 х 10 мм длиной 55 мм с концентратором (надрезанные с одной стороны посередине длины на глубину 2 мм).

Образец 1 стандартной формы

Что называется относительным сужением

укладывают горизонтально в специальный шаблон маятникового копра, обеспечиваюший установку надреза образца строго в середине пролета между опорами 3. Маятник 2 копра закрепляется в исходном верхнем положении на высоте H.

Работа, затраченная на разрушение образца, определяется разностью потенциальных энергий маятника в начальный (после подъема на угол α) и конечный моменты испытания (после взлета на угол β) и выражается формулой:

k = P (H — h)

k — работа, затраченная на разрушение образца, Дж (кгс · м)

Р — вес маятника, кгс

H и h — высоты подъема и взлета маятника, м

Основную характеристику при испытании на ударную вязкость — определяют по формуле:

kcu = k/So

kc — ударная вязкость, Дж/м² (1 Дж/м² ≈ 0,1 кгс · м/см²)

u — форма концентратора

So — площадь поперечного сечения образца в месте надреза до испытания, м²

Многие детали машин и конструкции во время работы подвергаются ударным нагрузкам, действие которых на детали происходит мгновенно. В результате изменяются условия, при которых работают такие детали.

Ударные нагрузки испытывают инструменты типа штампов. некоторые зубчатые передачи и т.д.

Усталость — разрушение металлов под действием многократных повторно-переменных (циклических) нагрузок, при напряжениях меньших предела прочности на растяжение.

В условиях действия повторно-переменных нагрузок в работающих деталях образуются и развиваются трещины, которые приводят к полному разрушению деталей. Подобное разрушение опасно тем, что может происходить под действием напряжений, намного меньших пределов прочности и текучести.

Свойство противостоять усталости называется выносливостью. Сопротивление усталости характеризуется пределом выносливости, т. е. наибольшим напряжением, которое может выдержать металл без разрушения заданное число раз.

Под действием повторно-переменных нагрузок работают коленчатые валы двигателей, многие детали машин — валы, шатуны, пальцы, шестерни и т. д.

Цель испытаний на усталость (ГОСТ 2860-65) — количественная оценка способности материала (образца) работать при повторно-переменных нагрузках без разрушения.

Цикл напряжений — совокупность переменных значений напряжении за один перепад их изменения. Заданное число циклов нагружения при испытании называют базой испытания. Обычно база испытания составляет 10 8 циклов нагружения. Если материал выдержал базовое число циклов без разрушения, то он хорошо противостоит усталости и деталь из этого материала будет работать надежно.

Ползучесть — способность металлов и сплавов медленно и непрерывно пластически деформироваться под действием постоянной, длительно действующей нагрузки.

Изделия из металлов и сплавов, работающие при повышенных или высоких температурах, обладают меньшей прочностью. При эксплуатации любой материал под действием постоянной нагрузки (напряжения) может в определенных условиях прогрессивно деформироваться с течением времени.

Испытания на ползучесть при растяжении (ГОСТ 3248-60) заключаются в том, что испытуемый образец в течение длительного времени подвергается действию постоянного растягивающего усилия при постоянной высокой температуре.

В результате испытания определяют предел ползучести металла, т. е. наибольшее растягивающее напряжение, при котором скорость ползучести или относительное удлинение за определенный промежуток времени достигает заданной величины.

Если задаются скоростью ползучести, то предел ползучести обозначают σνп,

где νп — заданная скорость ползучести, %/ч; t — температура испытания, °С.

Если задаются относительным удлинением, то в обозначении предела ползучести используют три индекса:

температуру испытания t, °С

относительное удлинение σ, %

продолжительность испытания τ, ч

Например, Что называется относительным сужением — предел ползучести при температуре 800° С, когда относительное удлинение σ = 1% достигается за 1000 ч.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *