Что называется относительной погрешностью приближенного числа

Абсолютная и относительная погрешность

Что называется относительной погрешностью приближенного числа Что называется относительной погрешностью приближенного числа

Всего получено оценок: 1759.

Всего получено оценок: 1759.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Что называется относительной погрешностью приближенного числа

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что называется относительной погрешностью приближенного числа

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Источник

Приложение А. Погрешности вычислений

Абсолютная и относительная погрешности

Точность полученного в результате вычисления результата определяется погрешностью вычислений. Различают два вида погрешностей – абсолютную и относительную.

Абсолютная погрешность некоторого числа равна разности между его истинным значением и приближенным значением, полученным в результате вычисления или измерения:

Что называется относительной погрешностью приближенного числа(А.1)

где а – приближенное значение числа х.

Относительная погрешность – это отношение абсолютной погрешности к приближенному значению числа:

Что называется относительной погрешностью приближенного числа(А.2)

Истинное значение величины х обычно неизвестно. Имеется лишь приближенное значение а и нужно найти его предельную погрешность Что называется относительной погрешностью приближенного числа. В дальнейшем значение Что называется относительной погрешностью приближенного числапринимается в качестве абсолютной погрешности приближенного числа а. Тогда истинное значение х находится в интервале Что называется относительной погрешностью приближенного числа.

Источники погрешностей

Рассмотрим различные причины возникновения погрешностей.

Математическая модель задачи является неточной

Погрешность возникает из-за того, что сам численный метод или математическая модель является лишь приближением к точному методу (например, дифференцирование). Кроме того, любая математическая модель или метод могут внести существенные погрешности, если в ней не учтены какие-то особенности рассматриваемой задачи. Модель может прекрасно работать в одних условиях и быть совершенно неприемлемой в других. Такую погрешность называют также методической. Она всегда имеет место, даже при абсолютно точных данных и абсолютно точных вычислениях. В большинстве случаев погрешность численного метода можно уменьшить до требуемого значения за счет изменения параметров метода (например, уменьшением шага дискретизации, или увеличением количества итераций).

Ошибки в исходных данных

Исходные данные задачи часто являются основным источником погрешностей. Ошибки такого типа неизбежны и проявляются в любых реальных задачах, поскольку любое измерение может быть проведено с только какой-то предельной точностью. Вместе с погрешностями, вносимыми математической моделью, их называют неустранимыми погрешностями, поскольку они не могут быть уменьшены ни до начала решения задачи, ни в процессе ее решения.

Следует стремиться к тому, чтобы все исходные данные были примерно одинаковой точности. Сильное уточнение одних исходных данных при наличии больших погрешностей в других не приводит к повышению точности конечных результатов. Если какие-то отдельные точки данных (измерения) явно ошибочные, их можно исключить из вычислений.

Вычислительные ошибки (ошибки округления)

Ошибки этого типа проявляются из-за дискретной (а не непрерывной) формы представления величин в компьютере. Вычислительные ошибки можно свести к минимуму продуманно организовывая алгоритмы.

Вычислительные ошибки

Рассмотрим подробнее вычислительные ошибки. Допустим, исходные данные не имеют погрешности, но поскольку место в памяти компьютера, отведенное на хранение чисел, ограничено, и соответственно ограничена точность представления чисел, возникновение вычислительных ошибок неизбежно.

Представление чисел с плавающей точкой

Для хранения целых чисел (int, long, unsigned int и т.д.) обычно отводится 4 байта памяти, что позволяет представлять целые числа, находящиеся примерно в диапазоне от Что называется относительной погрешностью приближенного числа.

В вычислениях чаще используются вещественные числа (float, double). Такие числа представляются в компьютере в форме с плавающей точкой, и хранятся в логарифмическом виде – мантисса и порядок:

Что называется относительной погрешностью приближенного числа(А.3)

где m – мантисса, p – порядок, а – основание степени.

Например, число 273.9 можно Что называется относительной погрешностью приближенного числапредставить в виде Что называется относительной погрешностью приближенного числаили в компьютерном представлении 2.739E+02.

В таблице А.1 приводится диапазон допустимых значений и другие параметры для чисел с плавающей точкой одинарной (float) и двойной (double) точности.

ТочностьОдинарнаяДвойная
Размер (байты)48
Наименьшее значение1.2·10 −382.3·10 −308
Наибольшее значение3.4×10 +381.7×10 +308
Размеры степени и мантиссы (биты)8-2311-52

Таблица A.1. Диапазон чисел, представимых в формате с плавающей точкой

Для чисел с плавающей точкой существует понятие машинного эпсилон – наименьшего положительного число ε такого, что Что называется относительной погрешностью приближенного числа. Например, для числа с одинарной точностью 1 + 0.00000001 = 1. Для одинарной точности Что называется относительной погрешностью приближенного числа, а для двойной точности Что называется относительной погрешностью приближенного числа.

Погрешность округления

При вычислениях с помощью компьютера неизбежны погрешности округлений, связанные с ограниченностью хранимых разрядов мантиссы. Для приближенного числа, полученного в результате округления, абсолютная погрешность Что называется относительной погрешностью приближенного числапринимается равной половине единицы последнего разряда числа. Например, значение Что называется относительной погрешностью приближенного числамогло быть получено округлением чисел 0.73441, 0.73353 и др. При этом Что называется относительной погрешностью приближенного числа. При простом отбрасывании лишних разрядов эта погрешность увеличивается вдвое.

Перевод чисел из одной системы счисления в другую также может быть источником погрешности из-за того, что основание одной системы счисления не является степенью основания другой (например, 10 и 2). Это может привести к тому, что в новой системе счисления число невозможно представить абсолютно точно, например:

Погрешность арифметических действий над приближенными числами

При выполнении операций над приближенными числами можно оценить предельную погрешность результата в зависимости от выполняемой операции. При умножении или делении чисел друг на друга их относительные погрешности складываются:

Что называется относительной погрешностью приближенного числа, Что называется относительной погрешностью приближенного числа(А.4)

При возведении в степень приближенного числа его относительная погрешность умножается на показатель степени:

Что называется относительной погрешностью приближенного числа(А.5)

При сложении или вычитании чисел их абсолютные погрешности складываются:

Что называется относительной погрешностью приближенного числа(А.6)

Относительная погрешность суммы положительных слагаемых вычисляется как:

Что называется относительной погрешностью приближенного числа. (А.7)

Отсюда следует, что относительная погрешность суммы нескольких чисел одного и того же знака, заключена между наименьшей и наибольшей из относительных погрешностей слагаемых:

Что называется относительной погрешностью приближенного числа. (А.8)

На практике для оценки погрешности при сложении чисел обычно используют максимальную погрешность Что называется относительной погрешностью приближенного числа.

При сложении погрешность будет сильно завесить от абсолютных величин складываемых чисел. Рассмотрим пример сложения двух чисел с одинаковым количеством значащих цифр, но разных по абсолютному значению:

1234 + 0.005678 = 1234.00005678

или в компьютерном представлении:

1.234Е+03 + 5.678Е-03 = 1.234005678Е+03

После сложения количество значащих цифр равно 10. Число с одинарной точностью (float) позволяет хранить только 8 значащих цифр, то есть на самом деле число будет равно 1.2340056Е+03. Две значащие цифры потерялись в процессе сложения. Потеря точности здесь возникает из-за того, что при прибавлении к большому числу малых чисел результат сложения выходит за пределы точности при округлении. Для того чтобы уменьшить погрешность вычислений, нужно складывать числа в порядке возрастания их абсолютной величины. Таким образом можно минимизировать абсолютную величину промежуточной погрешности при каждом сложении.

Рассмотрим теперь вычитание чисел (сложение чисел разного знака, или вычитание чисел одного знака). В соответствии с выражением (А.7) относительная погрешность может быть очень большой в случае, если числа близки между собой, так как даже при малых погрешностях Что называется относительной погрешностью приближенного числарезультат их сложения в знаменателе может быть очень малым. Чтобы уменьшить погрешность при вычитании, необходимо строить вычислительные алгоритмы таким образом, чтобы избегать вычитания близких чисел.

Таким образом, можно сделать вывод, что сложение и вычисление являются плохо обусловленными (неустойчивыми) операторами, так как при некоторых данных даже небольшая погрешность в исходных данных может привести к большой погрешности результата. Уменьшить погрешность можно за счет правильной последовательности операций. Из-за погрешности округления в машинной арифметике важен порядок выполнения операций, и известные из алгебры законы коммутативности (и дистрибутивности) здесь не всегда выполняются.

Источник

что называется предельной, абсолютной и относительной погрешностью

1.4. Погрешности приближенных вычислений
Тема 1. Введение. Приближенные числа и действия над ними. Оценка точности вычислений

1.4. Погрешности приближенных вычислений
Понятие о погрешности приближения

Естественно, что приближенное и точное число всегда отличаются друг от друга. Иначе говоря, при приближении возникает некоторая погрешность приближения. Причем, в математике различают относительную и абсолютную погрешность.

При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300-1284=16. А при округлении до 1280 абсолютная погрешность составляет 1280-1284 = 4.

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому (точному) числу.

При округлении числа 197 до 200 абсолютная погрешность составляет 200-197 = 3. Относительная погрешность равна 3/197 ≈ 0,01523 или приближенно 3/200 ≈ 1,5%.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Например, продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 ≈ 1,4%.

Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей) называется предельной относительной погрешностью.

Предельная абсолютная погрешность обозначается греческой буквой Δ – «дельта». А предельная относительная погрешность – греческой буквой δ («дельта малая»). Если приближенное число обозначить буквой α, то δ = Δ/ α.

В примере с арбузом за предельную абсолютную погрешность можно взять Δ = 50г, а за предельную относительную – δ = 1,4%.

Погрешность действий над приближенными числами

Предельная абсолютная погрешность суммы (разности) не превышает суммы предельных абсолютных погрешностей отдельных слагаемых.

Пусть даны точные числа и их приближенные значения: 2,463 ≈ 2,46 и 3,208 ≈ 3,21.

Их абсолютные погрешности приближений соответственно равны: 2,463-2,46 = 0,003 и 3,21-3,208 = 0,002.

Рассмотрим сумму приближенных чисел – 2,46+3,21 = 5,67.

Предельная погрешность суммы равна 0,003+0,002 = 0,005.

Если проверить, то получится, что точная сумма будет 2,463+3,208 = 5,671.

Следовательно, точно вычисленная погрешность приближения будет: 5,671-5,67 = 0,001. Действительно 0,001 ≤ 0,005.

Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей.

Пусть перемножаются приближенные числа 50 и 20 и пусть предельная относительная погрешность первого сомножителя равна 0,4%, а второго 0,5%. тогда предельная относительная погрешность произведения 50*20 = 1000 приближенно равна 0,9%.

Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя.

Таким образом, легко заметить, что при приближенных вычислениях погрешность может накапливаться!

Источник

Относительная погрешность. Верные цифры числа

Вычислительная математика. Погрешности. Решение задач

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ И ЕЕ ГРАНИЦА.

а – приближенное число

Разность х – а между точным числом х и приближенным числом а называется погрешностью приближения.

| х – а | = ∆ – абсолютная погрешность

Отношение абсолютной погрешности к модулю приближенного числа, называется относительной погрешностью

– относительная погрешность является показателем качества данного приближения, и ее часто выражают в процентах %

Граница относительной погрешности больше или равна относительной погрешности:

Если дана граница относительной погрешности, то говорят, что приближение дано с относительной точностью до Ꜫ % и записывают:

х = а (± Ꜫ) или х = а (± Ꜫ %)

В ряде задач границу абсолютной погрешности находят по данной относительной погрешности и модулю приближенного значения величины:

Скорость звука в воздухе 331,63 ± 0,04 м/с

Какое измерение точнее?

– значит скорость света точнее

Дана граница относительной погрешности и необходимо найти границу абсолютной погрешности, используем

Значит границы значений грузоподъемности автомобиля 2,5 ± 0,4 или 2,1 ≤ 2,5 ≤ 2,9

Найдите относительную погрешность в % с точностью до десятых

Решение: границу абсолютной погрешности находим из условия ± 1, значит ∆а=1, далее по формуле

Найдите относительную погрешность в % с точностью до сотых

Радиус Земли (в км): R = 6380 ± 1

Решение: границу абсолютной погрешности находим из условия ± 1, значит ∆а=1, далее по формуле

Найдите относительную погрешность в % с точностью до сотых

Скорость света в вакууме (в км/с):

Решение: границу абсолютной погрешности находим из условия

Диаметр Луны (в км): d = 3476 ± 1

Решение: границу абсолютной погрешности находим из условия ± 1, значит ∆а=1, далее по формуле

Источник

Относительная и абсолютная погрешность – формула определения, как рассчитать погрешность измерения

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Что называется относительной погрешностью приближенного числа

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *