Что называется осью электрокардиографического отведения
Что называется осью электрокардиографического отведения
Электрическая ось и электрическая позиция сердца
В данном выпуске коротоко каснусь данных вопросов. Со следующих выпусков начнем изучать патологию.
Также предыдущие выпуски и материалы для более глубокого изучения ЭКГ можно найти в разделе «Статей и видео уроков по расшифровке ЭКГ«.
1. Что такое результирующий вектор?
Электрическая ось и электрическая позиция сердца неразрывно связаны с понятием результирующего вектора возбуждения желудочков во фронтальной плоскости.
Результирующий вектор возбуждения желудочков представляет собой сумму трех моментных векторов возбуждения: межжелудочковой перегородки, верхушки и основания сердца.
Этот вектор имеет определенную направленность в пространстве, которое мы интерпретируем в трех плоскостях: фронтальной, горизонтальной и сагиттальной. В каждой из них результирующий вектор имеет свою проекцию.
2. Что такое электрическая ось сердца?
Электрической осью сердца называется проекция результирующего вектора возбуждения желудочков во фронтальной плоскости.
Электрическая ось сердца может отклоняться от своего нормального положения либо влево, либо вправо. Точное отклонение электрической оси сердца определяют по углу альфа (а).
3. Что такое угол альфа?
Величину угла альфа находят по специальным таблицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудочкового комплекса (Q + R + S) в I и III стандартных отведениях.
Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла альфа. В нашем случае он равен минус 70°.
Если угол альфа находится в пределах 50-70°, говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме. При отклонении электрической ось сердца вправо угол альфа будет определяться в пределах 70-90°. В обиходе такое положение электрической оси сердца называют правограммой.
Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой.
Однако определить отклонение электрической оси сердца можно и без необходимых таблиц.
В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. При этом понятие алгебраической суммы зубцов желудочкового комплекса заменяют понятием «определяющий зубец» комплекса QRS, визуально сопоставляя по абсолютной величине зубцы R и S. Говорят о «желудочковом комплексе R-типа», подразумевая, что в данном желудочковом комплексе более высоким является зубец R. Напротив, в «желудочковом комплексе S-типа» определяющим зубцом комплекса QRS является зубец S.
Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма). Схематично это условие записывается как RI-SIII.
Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма).
Упрощенно это условие записывается как SI-RIII.
Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так, что его направление совпадает с направлением оси II стандартного отведения.
4. Что такое электрическая позиция сердца?
Близкое по значению к электрической оси сердца имеет понятие электрическая позиция сердца. Под электрической позицией сердца подразумевают направление результирующего вектора возбуждения желудочков относительно оси I стандартного отведения, принимая ее как бы за линию горизонта.
Имеется также основная (промежуточная) электрическая позиция сердца, полугоризонтальная и полувертикальная. На рисунке показаны все позиции результирующего вектора и соответствующие электрические позиции сердца.
Для этих целей анализируют соотношение амплитуды зубцов К желудочкового комплекса в униполярных отведениях aVL и aVF, памятуя особенности графического отображения результирующего вектора регистрирующим электродом (рис. 18-21).
Выводы из данного выпуска рассылки «Изучаем Экг шаг за шагом-это легко!»:
1. Электрической осью сердца называется проекция результирующего вектора во фронтальной плоскости.
2. Электрическая ось сердца способна отклоняться от своего нормального положения либо вправо, либо влево.
3. Определить отклонение электрической оси сердца можно по измерению угла альфа.
Небольшая памятка:
4. Определить отклонение электрической оси сердца можно визуально.
RI-SШ левограмма
RII > RI > RIII нормограмма
SI-RIII правограмма
5. Электрическая позиция сердца — это положение результирующего вектора возбуждения желудочков по отношению его к оси I стандартного отведения.
6. На ЭКГ электрическую позицию сердца определяют по амплитуде зубца R, сравнивая ее в отведениях aVL и aVF.
7. Различают следующие электрические позиции сердца:
Заключение.
С уважением, ваш MedUniver.com
Дополнительная информация:
1. Понятие о «склонности электрической оси сердца»
В некоторых случаях при визуальном определении положения электрической оси сердца наблюдается ситуация, когда ось отклоняется от своего нормального положения влево, но четких признаков левограммы на ЭКГ не определяется. Электрическая ось находится как бы в пограничном положении между нормограммой и левограммой. В этих случаях говорят о склонности к левограмме. При аналогичной ситуации отклонения оси вправо говорят о склонности к правограмме.
2. Понятие «неопределенной электрической позиции сердца»
В ряде случаев на электрокардиограмме не удается найти условий, описанных для определения электрической позиции сердца. В таком случае говорят о неопределенной позиции сердца.
Многие исследователи полагают, что практическое значение электрической позиции сердца невелико. Ее используют обычно для более точной топической диагностики патологического процесса, происходящего в миокарде, и для определения гипертрофии правого или левого желудочка.
Что называется осью электрокардиографического отведения
В нашей статье приведены три стандартных двуполюсных отведения электрокардиограммы, а также три усиленных однополюсных отведения от конечностей. Каждое отведение представляет собой пару электродов, размещенных на поверхности тела по обе стороны от сердца. Линию, связывающую пару электродов и направленную от отрицательного электрода к положительному, называют осью отведения. Отведение I регистрируется от электродов, расположенных на двух верхних конечностях. Поскольку электроды расположены в горизонтальном направлении и положительный электрод находится слева, ось отведения I соответствует 0°.
Во время регистрации отведения II электроды расположены на правой руке и левой ноге. Следовательно, ось отведения проходит сверху вниз и справа налево, что соответствует примерно +60°.
Оси трех стандартных (двуполюсных) и трех усиленных (однополюсных) отведений от конечностей.
Векторный анализ потенциалов, зарегистрированных в различных отведениях
Итак, во-первых, электрические потенциалы сердца характеризуются величиной и направлением результирующего вектора в каждый данный момент сердечного цикла; во-вторых, направление и полярность осей электрокардиографических отведений можно использовать для определения моментного потенциала, который будет зарегистрирован в каждом отведении.
Моментный вектор желудочков (А) и его проекция (В) на ось стандартного отведения I
На рисунке изображен частично деполяризованный миокард желудочков. Вектор А является моментным результирующим вектором. В данном случае направление вектора равно +55°, а величина потенциала в соответствии с длиной вектора составляет 2 мВ. На графике в нижней части рисунка вектор А показан относительно оси отведения I (направление оси 0°). Чтобы определить, какую величину будет иметь вектор А на кривой электрокардиограммы в отведении I, необходимо провести перпендикуляр от конца вектора А на ось отведения I и получить проекцию вектора на ось отведения. Проекция вектора, показанная на схеме в виде стрелки В, направлена к положительному полюсу оси отведения I. Следовательно, на кривой электрокардиограммы возникнет отклонение в положительную сторону, а величина его будет равна В/А = 2 мВ, т.е. около 1 мВ.
Моментный вектор желудочков (А) и его проекция (В) на ось стандартного отведения I
Моментный вектор желудочков (А) и его проекция на ось отведения I (В), отведения II (С) и отведения III (D)
Векторный анализ потенциалов в трех стандартных биполярных отведениях. На рисунке вектор А отражает моментный электрический потенциал частично деполяризованной сердечной мышцы. Чтобы оценить величину моментного потенциала, зарегистрированного в каждом из трех стандартных отведений, опустим перпендикуляры от вершины вектора А на оси отведений I, II и III (как показано на схеме пунктирными линиями). Проекция вектора В дает представление о величине потенциала, зарегистрированного в отведении I; проекция С дает представление о величине потенциала, зарегистрированного в отведении II; проекция D дает представление о величине потенциала, зарегистрированного в отведении III. Во всех отведениях это отклонение положительное (т.е. вверх от нулевой линии), т.к. все проекции векторов направлены к положительному полюсу осей отведения. В отведении I величина отклонения (вектор В) составляет примерно половину от реальной величины потенциала сердца (вектора А); в отведении II величина отклонения (вектор С) почти равна реальному потенциалу сердца; в отведении III (вектор D) — составляет примерно 1/3 реальной величины.
Аналогичный анализ можно провести для оценки потенциалов, зарегистрированных в усиленных (однополюсных) отведениях от конечностей.
Что называется осью электрокардиографического отведения
• Правый тип ЭКГ у детей грудного и более старшего возраста является физиологической нормой.
• Вертикальное положение электрической оси сердца в основном наблюдается у лиц молодого возраста.
• Среднее, или нормальное, положение электрической оси отмечается у лиц молодого возраста.
• Отклонение электрической оси сердца влево (левый тип ЭКГ) обычно встречается у взрослых и пожилых мужчин.
В повседневной клинической практике при интерпретации ЭКГ принято определять тип ЭКГ. Под типом ЭКГ понимают положение электрической оси сердца во фронтальной плоскости, которое можно определить по ЭКГ, зарегистрированной в отведениях Эйнтховена.
Можно определить направление главного вектора ЭДС, или сумму всех электрических потенциалов клеток миокарда во время систолы по амплитуде комплекса QRS, и тем самым определить тип ЭКГ. Тип ЭКГ, т.е. положение электрической оси сердца, не всегда совпадает с положением его анатомической оси.
Угол наклона вектора QRS к горизонтальной линии называется углом а. Значение этого угла при различных типах ЭКГ разное.
Определив угол а, можно точно определить положение электрической оси, однако этот способ трудоемкий и непрактичный. Поэтому здесь мы его рассматривать не будем.
Типы ЭКГ и угол а комплекса QRS.
Бледным цветом обозначены физиологические типы ЭКГ.
К основным типам ЭКГ относятся:
• правый;
• вертикальный;
• средний;
• левый.
К редким типам ЭКГ относятся в частности:
• резкий левый тип;
• резкий правый тип;
• сагиттальный тип.
При правом типе электрическая ось направлена вправо и вниз. Поэтому проекция главного вектора ЭДС наибольшая во II и III отведениях, зубец R во II и особенно в III отведении высокий, в то время как в I отведении регистрируется глубокий зубец S (маленький зубец R не показан).
При среднем типе электрическая ось сердца направлена влево и вниз, поэтому в I, II и III отведениях регистрируется отчетливый зубец R, который во II отведении имеет наибольшую амплитуду.
Резкий правый тип ЭКГ. Правый тип, во II отведении R
Учебное видео определения ЭОС (электрической оси сердца) по ЭКГ
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Что называется осью электрокардиографического отведения
ЭКГ : источники зубцов, интервалов и сегментов на ЭКГ.
Пользователи акцентировали внимание на трудность понимание материала и отсутствие четкости, данной рассылкой, попытаюсь всё исправить.
Также предыдущие выпуски и материалы для более глубокого изучения ЭКГ можно найти в разделе «Статей и видео уроков по расшифровке ЭКГ«.
2. Где находится источник импульсов в сердце?
Сердце работает в нашем организме под руководством собственного водителя ритма, который вырабатывает электрические импульсы и направляет их в проводящую систему.
Расположен водитель ритма сердца в правом предсердии в месте слияния полых вен, т.е. в синусе, и поэтому назван синусовым узлом, а импульс возбуждения, исходящий из синусового узла, называется соответственно синусовым импульсом.
У здорового человека синусовый узел вырабатывает электрические импульсы с частотой 60-90 в мин, равномерно посылая их по проводящей системе сердца. Следуя по ней, эти импульсы охватывают возбуждением прилегающие к проводящим путям отделы миокарда и регистрируются графически на ленте как кривая линия ЭКГ.
Помимо регистрации зубцов, на электрокардиограмме по горизонтали записывается время, в течение которого импульс проходит по определенным отделам сердца. Отрезок на электрокардиограмме, измеренный по своей продолжительности во времени (в секундах), называют интервалом.
Электрический потенциал, выйдя за пределы синусового узла, охватывает возбуждением прежде всего правое предсердие, в котором находится синусовый узел. Так на ЭКГ записывается пик возбуждения правого предсердия.
Рис. 4. Возбуждение левого предсердия и его графическое изображение
Далее, по проводящей системе предсердий, а именно по межпредсердному пучку Бахмана, электроимпульс переходит на левое предсердие и возбуждает его. Этот процесс отображается на ЭКГ пиком возбуждения левого предсердия. Его возбуждение начинается в то время, когда правое предсердие уже охвачено возбуждением, что хорошо видно на рисунке.
Рис. 5 Зубец P.
Отображая возбуждения обоих предсердий, электрокардиографический аппарат суммирует оба пика возбуждения и записывает графически на ленте зубец Р.
Таким образом, зубец Р представляет собой суммационное отображение прохождения синусового импульса по проводящей системе предсердий и поочередное возбуждение сначала правого (восходящее колено зубца Р), а затем левого (нисходящее колено зубца Р) предсердий.
4. Что такое интервал «P-Q»?
Одновременно с возбуждением предсердий импульс, выходящий из синусового узла, направляется по нижней веточке пучка Бахмана к атриовентрикулярному (предсерд-ножелудочковому) соединению. В нем происходит физиологическая задержка импульса (замедление скорости его проведения). Проходя по атриовентрикулярному соединению, электрический импульс не вызывает возбуждения прилежащих слоев, поэтому на электрокардиограмме пики возбуждения не записываются. Регистрирующий электрод вычерчивает при этом прямую линию, называемую изо-электрической линией.
Оценить прохождение импульса по атриовентрикуляр-ному соединению можно во времени (за сколько секунд импульс проходит это соединение). Таков генез интервала P-Q.
Рис. 6. Интервал Р-Q 5. Что такое зубцы «Q», «R»,»S»?
Продолжая свой путь по проводящей системе сердца, электрический импульс достигает проводящих путей желудочков, представленных пучком Гиса, проходит по этому пучку, возбуждая при этом миокард желудочков.
Рис. 7. Возбуждение межжелудочковой перегородки (зубец Q)
Этот процесс отображается на электрокардиограмме формированием (записью) желудочкового комплекса QRS.
Следует отметить, что желудочки сердца возбуждаются в определенной последовательности.
Сначала, в течение 0,03 с возбуждается межжелудочковая перегородка. Процесс ее возбуждения приводит к формированию на кривой ЭКГ зубца Q.
Затем возбуждается верхушка сердца и прилегающие к ней области. Так на ЭКГ появляется зубец R. Время возбуждения верхушки в среднем равно 0,05 с.
Рис. 8. Возбуждение верхушки сердца (зубец R)
И в последнюю очередь возбуждается основание сердца. Следствием этого процесса является регистрация на ЭКГ зубца S. Продолжительность возбуждения основания сердца составляет около 0,02 с.
Рис. 9. Возбуждение основания сердца (зубец S)
Вышеназванные зубцы Q, R и S образуют единый желудочковый комплекс QRS продолжительностью 0,10 с.
Охватив возбуждением желудочки, импульс, начавший путь из синусового узла, угасает, потому что клетки миокарда не могут долго «оставаться возбужденными. В них начинаются процессы восстановления своего первоначального состояния, бывшего до возбуждения.
Процессы угасания возбуждения и восстановление исходного состояния миокардиоцитов также регистрируются на ЭКГ.
Рис. 10. Процессы возбуждения и реполяризации миокарда 7. С зубцами и интервалами мы разобрались, а какова же их величина в норме?
Традиционно все измерения зубцов и интервалов принято производить во втором стандартном отведении, обозначаемом римской цифрой II. В этом отведении высота зубца R в норме должна быть равна 10 мм, или 1 mV.
Высота зубца Т и глубина зубца S должны соответствовать 1/2-1/3 высоты зубца R или 0,5-0,3 mV.
Высота зубца Р и глубина зубца Q будут равны 1/3-1/4 от высоты зубца R или 0,3-0,2 mV.
В электрокардиографии ширину зубцов (по горизонтали) принято измерять не в миллиметрах, а в секундах, например, ширина зубца Р равняется 0,10 с. Эта особенность возможна потому, что запись ЭКГ производят на постоянной скорости протяжки ленты. Так, при скорости лентопротяжного механизма 50 мм/с, каждый миллиметр будет равен 0,02 с.
Подведём итоги первой переработанной версии рассылки «ЭКГ : источники зубцов, интервалов и сегментов на ЭКГ. ЭКГ нормальное ( физиологическое ).»:
Дополнительная информация к первому выпуску рассылки:
Проводящая система сердца, о которой речь шла выше, заложена под эндокардом, и для того чтобы охватить возбуждением мышцу сердца, импульс как бы «пронизывает» толщу всего миокарда в направлении от эндокарда к эпикарду
Для охвата возбуждением всей толщи миокарда требуется определенное время. И это время, в течение которого импульс проходит от эндокарда к эпикарду, называется временем внутреннего отклонения и обозначается большой латинской буквой J.
Определить время внутреннего отклонения на ЭКГ достаточно просто: для этого необходимо опустить перпендикуляр от вершины зубца К до пересечения его с изоэлек-трической линией. Отрезок от начала зубца Q до точки пересечения этого перпендикуляра с изоэлектрической линией и есть время внутреннего отклонения.
Время внутреннего отклонения измеряется в секундах и равно 0,02-0,05 с.
Что называется осью электрокардиографического отведения
Таким образом, электрокардиографическим отведением называется конкретная система (схема) расположения регистрирующих электродов на теле пациента для записи ЭКГ.
2. Что такое стандартные ЭКГ отведения?
3. Что такое однополюсные ЭКГ отведения?
Рис. 1. Система отведений
Что такое грудные отведения?
Ломимо стандартных и однополюсных отведений от конечностей, в электрокардиографической практике применяются еще и грудные отведения.
При записи ЭКГ в грудных отведений регистрирующий однополюсный электрод прикрепляется непосредственно к грудной клетке. Электрическое поле сердца здесь наиболее сильное, поэтому нет необходимости усиливать грудные униполярные отведения, но не это главное.
Главное в том, что грудные отведения, как отмечалось выше, регистрируют электрические потенциалы с другой эквипотенциальной окружности электрического поля сердца.
Так, для записи электрокардиограммы в стандартных и однополюсных отведениях потенциалы регистрировались с эквипотенциальной окружности электрического поля сердца, расположенной во фронтальной плоскости (электроды накладывались на руки и на ноги).
При записи ЭКГ в грудных отведениях электрические потенциалы регистрируются с окружности электрического поля сердца, которая располагается в горизонтальной плоскости. Рис. 2. Изменение результирующего вектора во фронтальной и горизонтальной плоскостях
Места прикрепления регистрирующего электрода на поверхности грудной клетки строго оговорены: так при позиции регистрирующего электрода в 4 межреберье у правого края грудины ЭКГ записывается в первом грудном отведении, обозначаемом как V1.
Ниже приводится схема расположения электрода и получаемые при этом электрокардиографические отведения:
Отведения Местоположение регистрирующего электрода
V1 в 4-м межреберье у правого края грудины
V2 в 4-м межреберье у левого края грудины
V3 на середине расстояния между V1 и V4
V4 в 5-м межреберье на срединно-ключичной линии
V5 на пересечении горизонтального уровня 5-го межреберья и передней подмышечной линии
V6 на пересечении горизонтального уровня 5-го межреберья и средней подмышечной линии
V7 на пересечении горизонтального уровня 5-го
межреберья и задней подмышечной линии
V8 на пересечении горизонтального уровня 5-го
межреберья и срединно-лопаточной линии
V9 на пересечении горизонтального уровня 5-го межреберья и паравертебральной линии
Отведения V7, V8, и V9 не нашли своего широкого применения в клинической практике и почти не используются.
Первые же шесть грудных отведений (V1-V6) наряду с тремя стандартными (I, II, III) и тремя усиленными одно-
Рис. 3. ЭКГ, записанная в 12 общепринятых отведениях
Подведём итоги данного выпуска:
1. Электрокардиографическим отведением называется конкретная схема наложения регистрирующих электродов на поверхность тела пациента для записи ЭКГ.
2. Электрокардиографических отведений много. Нали чие множества отведений обусловлено необходимостью за писывать потенциалы различных участков сердца.
3. Позиция регистрирующего электрода на поверхнос ти тела пациента для записи ЭКГ в конкретном отведении строго оговорена и соотнесена с анатомическим образова нием.
Дополнительная информация к данному выпуску:
1. Другие отведения
Помимо общепринятых 12 отведений существует еще несколько модификаций записи ЭКГ в отведениях, предложенных различными авторами. Так, в практике часто применяют отведения, предложенные Клетеном (отведения по Клетену), Небом (отведения по Небу). В исследовательских целях часто используют электрографическое картирование сердца, когда ЭКГ регистрируют в 42 отведениях от грудной клетки. Нередко приходится записывать ЭКГ в грудных отведениях на одно или два межреберья выше от обычного местоположения электрода. Существуют внут-рипищеводные отведения, когда регистрирующий электрод находится внутри пищевода (внутриполостные отведения), и множество других отведений.
2. Отделы сердца, отображаемые отведениями
Наличие столь большого количества отведений обусловлено тем, что каждое конкретное отведение регистрирует особенности прохождения синусового импульса по определенным отделам сердца.
Установлено, что I стандартное отведение регистрирует особенности прохождения синусового импульса по передней стенке сердца, III стандартное отведение отображает потенциалы задней стенки сердца, II стандартное отведение представляет собой как бы сумму I и III отведений. Далее см. схематическую таблицу.
Отведения Отделы миокарда, отображаемые отведением
I передняя стенка сердца
II суммационное отображение I и III
III задняя стенка сердца
aVR правая боковая стенка сердца aVL левая передне-боковая стенка сердца aVF задне-нижняя стенка сердца V1 и V2 правый желудочек
VЗ меж желудочковая перегородка
V4 верхушка сердца
V5 передне-боковая стенка левого желудочка
V6 боковая стенка левого желудочка
Таким образом, если на электрокардиографической ленте будут зарегистрированы отклонения от нормы в отведении V3, можно думать, что патология имеет место в межжелудочковой перегородке. Следовательно, большое разнообразие электрокардиографических отведений позволяет нам с большей степенью достоверности осуществлять топическую диагностику процесса, происходящего в том или ином участке сердца.
Рис. 4. Регистрация результирующего вектора отведениями V1 и V6
Помимо топической диагностики патологического процесса в различных отделах миокарда, электрокардиографические отведения позволяют проследить отклонение электрической оси сердца и определить его электрическую позицию. Об этих понятиях мы и поговорим ниже.
Видео техники снятия ЭКГ
Учебное видео расшифровки ЭКГ в норме
Заключение
Еще больше информации для изучения ЭКГ в виде статей и видео уроков в разделе «Расшифровка ЭКГ в норме и при патологии».
Далее для изучения ЭКГ рекомендуем следующий урок «Электрическая ось и электрическая позиция сердца».