Что называется осями координат полуосями
Координаты. Декартова система координат.
Координаты – совокупность данных, на основании которых точно характеризуется местоположение объекта.
Рене Декарт (1596–1650) предложил представлять местоположение точки на плоскости при помощи пары координат.
Для характеристики координат требуются ориентиры. Данными ориентирами на плоскости выступают две числовые оси. Сначала чертят горизонтальную ось, её принято определять как ось абсцисс и подписывать буквой х, указывают, что это ось 0х. Положительное направление на оси абсцисс принято слева на право и указывается стрелкой.
Следующей чертят вертикально ось, её принято определять как ось ординат и подписывать буквой у, указывают, что это ось 0у. Положительное направление на оси ординат принято снизу вверх и указывается стрелкой.
Оси пересекаются под углом 90°, то есть являются взаимно перпендикулярными. Точку их пересечения обозначают как «0». Точку «0» принято считать исходной точкой для отсчёта по каждой из осей.
Система координат — это две взаимно перпендикулярные координатные прямые, которые пересекаются в месте, являющемся началом отсчёта для каждой из них.
Координатные оси — это прямые, формирующие систему координат.
Ось абсцисс (0x) — расположенная горизонтально ось.
Ось ординат (0y) —расположенная вертикально ось.
Координатная плоскость — плоскость, в которой сформирована система координат. Для обозначения данной плоскости применяют x0y.
Цифры, указывающие числовые значения на осях размещают как по правую, так и по левую сторону от оси 0y. Цифры на оси 0x принято указывать внизу под осью.
Чаще всего единичные отрезки по оси 0y и оси 0x одинаковы. Но встречаются ситуации, когда они не равны друг другу.
Оси координат разделяют плоскость на 4 угла, которые обозначают как координатные четверти. Четверть, сформированная положительными полуосями (правый верхний угол), принято считать первой (I). Остальные четверти (координатные углы) располагаем против часовой стрелки.
Прямоугольная система координат
Прямоугольная система координат на плоскости задаётся двумя взаимно перпендикулярными прямыми. Прямые называют осями координат (или координатными осями). Точку пересечения этих прямых называют началом отсчёта и обозначают буквой O.
Обычно одна из прямых горизонтальна, другая — вертикальна. Горизонтальную прямую обозначают как ось x (или Ox) и называют осью абсцисс, вертикальную — ось y (Oy), называют осью ординат. Всю систему координат обозначают xOy.
Точка O разбивает каждую из осей на две полуоси, одну из из которых считают положительной (её обозначают стрелкой), другую — отрицательной.
Каждой точке F плоскости ставится в соответствие пара чисел (x;y) — её координаты.
Координата x называется абсциссой. Она равна расстоянию от точки F до оси Ox, взятому с соответствующим знаком.
Координата y называется ординатой и равна расстоянию от точки F до оси Oy (с соответствующим знаком).
Расстояния до осей обычно (но не всегда) измеряют одной и той же единицей длины.
Точки, расположенные справа от оси y, имеют положительные абсциссы. У точек, которые лежат левее оси ординат, абсциссы отрицательны. Для любой точки, лежащей на оси Oy, её координата x равна нулю.
Точки с положительной ординатой лежат выше оси x, с отрицательной — ниже. Если точка лежит на оси Ox, её координата y равна нулю.
Координатные оси разбивают плоскость на четыре части, которые называют координатными четвертями (или координатными углами или квадрантами).
1 координатная четверть расположена в правом верхнем углу координатной плоскости xOy. Обе координаты точек, расположенных в I четверти, положительны.
Переход от одной четверти к другой ведётся против часовой стрелки.
2 координатная четверть находится в левом верхнем углу. Точки, лежащие во II четверти, имеют отрицательную абсциссу и положительную ординату.
3 координатная четверть лежит в левом нижнем квадранте плоскости xOy. Обе координаты точек, принадлежащей III координатному углу, отрицательны.
4 координатная четверть — это правый нижний угол координатной плоскости. Любая точка из IV четверти имеет положительную первую координату и отрицательную вторую.
Пример расположения точек в прямоугольной системе координат:
Прямоугольная система координат. Ось абсцисс и ординат
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Прямоугольная декартова система координат
Французский математик Рене Декарт преддложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.
Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.
Прямоугольная система координат в трехмерном пространстве
Трехмерное евклидово пространство состоит из трех взаимно перпендикулярных прямых: Ох, Оу, Оz, где Оz — ось аппликат. По направлению координатных осей есть разделение на правую и левую прямоугольные системы координат трехмерного пространства.
Оси координат пересекаются в точке О, которую называют началом. У каждой оси есть положительное направление, которое отмечается стрелкой. Если при повороте Ох против часовой стрелки на 90° ее положительное направление совпадает с положительным Оу, тогда это применимо для положительного направления Оz. Такую систему считают правой. Объясняем на пальцах! Если сравнить направление Х с большим пальцем руки, то указательный отвечает за Y, а средний за Z.
Также образуется левая система координат. Совмещать обе системы нет смысла, так как соответствующие оси не совпадут.
Координаты точки в декартовой системе координат
Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.
Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.
Число xM — это координата точки М на заданной координатной прямой.
Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на Оу — yM. Как это выглядит на координатных осях:
Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.
Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.
Координаты точки в трехмерном пространстве
Сформулируем определение точки М в трехмерном пространстве.
Пусть Mx, My, Mz — это проекции точки М на соответствующие оси Оx, Оy, Оz. Тогда значения этих точек на осях примут значения xM, yM, zM. Как это выглядит на координатных прямых:
Чтобы получить проекции точки М, нужно добавить перпендикулярные прямые Оx, Оy, Оz, продолжить их и изобразить в виде плоскостей, которые проходят через М. Так плоскости пересекутся в Mx, My, Mz.
У каждой точки трехмерного пространства есть свои данные (xM, yM, zM), которые являются координатами точки М.
xM, yM, zM — это числа, которые являются абсциссой, ординатой и аппликатой данной точки М. Верно и обратное утверждение: каждая упорядоченная тройка действительных чисел (xM, yM, zM) в заданной прямоугольной системе координат имеет одну соответствующую точку М трехмерного пространства.
Математика. 6 класс
Конспект урока
Координатная ось. Часть 1
Перечень рассматриваемых вопросов:
Прямую, на которой выбрано начало отсчета, положительное направление и единичный отрезок, называют координатной осью.
Координатой точки A, лежащей на положительном луче координатной оси x, называется положительное действительное число х, равное длине отрезка OA. Координатой точки A, лежащей на отрицательном луче координатной оси x, называется отрицательное действительное число х, равное длине отрезка OA, взятой со знаком «–».
Координата начальной точки O равна нулю.
Теоретический материал для самостоятельного изучения
Прямую, на которой выбрано начало отсчёта, положительное направление и единичный отрезок, называют координатной осью.
Координатная ось может быть горизонтальной, вертикальной или направленной в любую удобную сторону. Положительное направление тоже может быть задано исходя из удобства работы в каждом конкретном случае.
Точка O делит ось на два луча: положительный и отрицательный.
Каждой точке координатной оси поставим в соответствие действительное число x по следующему правилу:
– начальной точке O – число нуль;
– точке A, находящейся на положительном луче, – число х, равное длине отрезка OA;
– точке A, находящейся на отрицательном луче, – отрицательное число х, равное длине отрезка ОА, взятой со знаком «–».
Определённую таким образом координатную ось называют координатной осью x, или, коротко, осью x.
Число, соответствующее любой точке оси, называют координатой этой точки.
Ранее вводилось понятие координатной оси, но на ней рассматривались только точки, имеющие рациональные координаты. Таким образом, ось была не полная и имела пустоты на месте иррациональных чисел.
Однако координата произвольной точки есть действительное число, т. е. оно может быть рациональным или иррациональным, как и длина отрезка, ему соответствующая.
Теперь координатная ось стала полной – каждой её точке соответствует действительное число.
Пусть А и В точки с координатами A(x) и B(y).
– если х > у, то точка A расположена правее точки B на координатной оси;
– расстояние между точками A и B равно х – у;
– середина отрезка AB – точка M – имеет координаты: (х+ у)/2.
Разбор заданий тренировочного модуля
Тип 1. Ввод с клавиатуры пропущенных элементов в тексте
Какая точка лежит правее?
Найдём расстояние AB.
АВ = 3,4 – (– 5,6) = 3,4 + 5,6 = 9.
Тип 2. Единичный выбор
Найдём координаты точки М, середины отрезка АВ, если А(3,4) и В(– 5,6).
Варианты ответов: – 1,1; 1,1; 2,3; 6,8.
По формуле координаты середины отрезка получаем
Прямоугольная система координат на плоскости и в пространстве
При введении системы координат на плоскости или в трехмерном пространстве появляется уникальная возможность описания геометрических фигур и их свойств при помощи уравнений и неравенств. Это имеет иное название – методы алгебры.
Данная статья поможет разобраться с заданием прямоугольной декартовой системой координат и с определением координат точек. Более наглядное и подробное изображение имеется на графических иллюстрациях.
Прямоугольная декартова система координат на плоскости
Изображение прямоугольной системы координат на плоскости.
Оси абсцисс и ординат имеют одинаковую единицу изменения и масштаб, что показано в виде штрихе в начале координатных осей. Стандартное направление О х слева направо, а O y – снизу вверх. Иногда используется альтернативный поворот под необходимым углом.
Прямоугольная система координат получила название декартовой в честь ее первооткрывателя Рене Декарта. Часто можно встретить название как прямоугольная декартовая система координат.
Прямоугольная система координат в трехмерном пространстве
По направлению координатных осей делят на правую и левую прямоугольные системы координат трехмерного пространства.
Аналогично образуется левая система координат. Обе системы совместить невозможно, так как соответствующие оси не совпадут.
Координаты точки в декартовой системе координат на плоскости
Имеющееся число x M называют координатой точки М на заданной координатной прямой.