Что называется магнитным потоком сцепленным с контуром потокосцеплением
Потокосцепление и магнитный поток
Из опыта известно, что возле постоянных магнитов, равно как и вблизи проводников с током, можно наблюдать физические эффекты, такие как механическое действие на другие магниты или проводники с током, а также появление ЭДС в движущихся в данном пространстве проводниках.
Необычное состояние пространства возле магнитов и проводников с током, называется магнитным полем, количественные характеристики которого легко определяются по данным явлениям: по силе механического воздействия или по электромагнитной индукции, по сути — по величине наводимой в движущемся проводнике ЭДС.
Явление наведения ЭДС в проводнике (явление электромагнитной индукции) проявляет себя в различных условиях. Вы можете двигать проводник через однородное магнитное поле, а можете просто изменять магнитное поле возле неподвижного проводника. В обоих случаях изменяющееся в пространстве магнитное поле станет наводить в проводнике ЭДС.
Простое экспериментальное приспособление для исследования данного явления изображено на рисунке. Здесь проводящее (медное) кольцо соединено своими выводами с баллистическим гальванометром, по отклонению стрелки которого можно будет судить о количестве электрического заряда, проходящего через эту нехитрую цепь. Сначала разместим кольцо центром в какой-нибудь точке пространства около магнита (положение а), затем резко отодвинем кольцо (в положение б). Гальванометр покажет значение прошедшего по цепи заряда Q.
Теперь поместим кольцо в другую точку, чуть-чуть подальше от магнита (в положение в), и снова, с такой же скоростью, резко отодвинем его в сторону (в положение г). Отклонение стрелки гальванометра будут меньше чем в первом эксперименте. А если увеличить сопротивление петли R, например заменив медь на вольфрам, то перемещая кольцо аналогичным образом мы заметим, что гальванометр покажет заряд еще меньший, однако величина этого движущегося через гальванометр заряда в любом случае будет обратно пропорциональна сопротивлению петли.
Эксперимент отчетливо демонстрирует, что пространство вокруг магнита в каждой его точке обладает каким-то свойством, чем-то таким, что напрямую влияет на количество заряда, проходящего через гальванометр, когда мы отодвигаем кольцо от магнита. Назовем это что-то, находящееся около магнита, магнитным потоком, и обозначим его количественную величину буквой Ф. Отметим выявленную зависимость Ф
Усложним эксперимент. Закрепим медную петлю в определенной точке напротив магнита, рядом с ним (в положении д), но теперь будем изменять площадь петли (перекрывая ее часть проводником). Показания гальванометра будут пропорциональны изменению площади кольца (в положении е).
Следовательно действующий на петлю магнитный поток Ф от нашего магнита пропорционален площади петли. А вот магнитная индукция B, связанная с положением кольца относительно магнита, но не зависящая от параметров кольца, определяет свойство магнитного поля в каждой рассматриваемой точке пространства возле магнита.
Продолжая эксперименты с медным кольцом, теперь будем изменять положение плоскости кольца относительно магнита в начальный момент (положение ж), и затем поворачивать его до положения вдоль оси магнита (положение з).
Заметим, что чем больше изменение угла между кольцом и магнитом — тем больше заряда Q протекает по цепи через гальванометр. Это значит, что магнитный поток через кольцо пропорционален косинусу угла между магнитом и нормалью к плоскости кольца.
Таким образом можно заключить, что магнитная индукция B – есть величина векторная, направление которой в данной точке совпадает с направлением нормали к плоскости кольца в том его положении, когда при резком отодвигании кольца далеко от магнита, проходящий по цепи заряд Q максимален.
Вместо магнита в эксперименте можно применять катушку электромагнита, отодвигать эту катушку или изменять в ней ток, усиливая или уменьшая таким образом магнитное поле, пронизывающее экспериментальный виток.
Площадь, пронизываемая магнитным полем, не обязательно может быть ограничена круглым витком, это может быть в принципе любая поверхность, магнитный поток через которую определяется тогда путем интегрирования:
Разделив пространство магнитного поля воображаемыми трубками единичного поперечного сечения S=1, можно получить так называемые единичные магнитные трубки, оси которых называют единичными магнитными линиями. При помощи данного подхода можно наглядно изобразить количественную картину магнитного поля, и в этом случае магнитный поток будет равен количеству линий, проходящих через выбранную поверхность.
Магнитные линии непрерывны, они выходят из северного полюса и обязательно входят в южный, поэтому суммарный магнитный поток через любую замкнутую поверхность равен нулю. Математически это выглядит так:
Рассмотрим магнитное поле, ограниченное поверхностью цилиндрической катушки. По сути — магнитный поток, пронизывающий поверхность, образованную витками данной катушки. В этом случае общую поверхность можно разделить на отдельные поверхности для каждого из витков катушки. На рисунке видно, что поверхности верхних и нижних витков катушки пронизываются четырьмя единичными магнитными линиями, а поверхности витков в середине катушки — восемью.
Чтобы найти величину полного магнитного потока через все витки катушки, необходимо суммировать магнитные потоки, пронизывающие поверхности каждого из ее витков, то есть магнитные потоки, сцепленные с отдельными витками катушки:
Ф = Ф1+Ф2+Ф3+Ф4+Ф5+Ф6+Ф7+Ф8, если в катушке 8 витков.
Для примера симметричной катушки, изображенной на предыдущем рисунке:
Ф верхних витков = 4+4+6+8 = 22;
Ф нижних витков = 4+4+6+8 = 22.
Ф общее = Ф верхних витков + Ф нижних витков = 44.
Здесь и вводится понятие «потокосцепление». Потокосцепление — это общий магнитный поток, сцепленный со всеми витками катушки, численно равный сумме магнитных потоков, сцепленных с отдельными ее витками:
Потокосцепление — величина виртуальная, так как реально нет никакой суммы отдельных магнитных потоков, а есть общий магнитный поток. Тем не менее, когда реальное распределение магнитного потока по виткам катушки неизвестно, а известно потокосцепление, то катушку можно заменить эквивалентной, вычислив количество эквивалентных одинаковых витков, необходимых для получения требуемого общего магнитного потока.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Потокосцепление
Потокосцепле́ние (полный магнитный поток) — физическая величина, представляющая собой суммарный магнитный поток, сцепляющийся со всеми витками катушки индуктивности.
Содержание
Определение
Потокосцепление численно равно сумме магнитных потоков, проходящих через каждый виток катушки, т.е. при количестве витков N и одинаковом магнитном потоке в каждом витке потокосцепление можно определить как где — магнитный поток одного витка [ Вб ].
В идеальном соленоиде все магнитные силовые линии проходят через каждый виток (т.е. не пересекают боковую поверхность соленоида), и, следовательно, магнитный поток каждого витка одинаков. Однако на практике магнитные потоки в витках катушки отличаются и величина потокосцепления определяется по формуле:
где:
— количество витков;
— номер витка, с которым сцеплен поток
В случае, если катушка имеет ферромагнитный сердечник, потокосцепление можно определить по формуле:
где — магнитный поток через магнитопровод (сердечник) катушки.
Величина потокосцепления, помимо магнитного потока, имеет связь с током I в индуктивности, определяющуюся выражением:
где — индуктивность катушки [ Гн ].
Эта формула выражает принцип непрерывности во времени потокосцепления катушки индуктивности.
Принцип непрерывности
Запас энергии магнитного поля в катушке индуктивности не может измениться скачком. Это выражает принцип непрерывности во времени. Невозможность скачкообразного изменения потокосцепления индуктивности объясняется, в свою очередь, тем, что в противном случае на индуктивности появилось бы бесконечно большое напряжение, что противоречит опыту.
Принцип непрерывности также означает, что ток в индуктивности не может измениться скачком (см. переходные процессы в электрических цепях):
— первый закон коммутации.
См. также
Литература
Полезное
Смотреть что такое «Потокосцепление» в других словарях:
потокосцепление — потокосцепление … Орфографический словарь-справочник
ПОТОКОСЦЕПЛЕНИЕ — полный магнитный поток, пронизывающий электрический контур. Напр., потокосцепление многовитковой катушки индуктивности равно сумме потоков через все ее витки. Единица измерения Вб … Большой Энциклопедический словарь
потокосцепление — сущ., кол во синонимов: 1 • поток (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
потокосцепление — Сумма магнитных потоков, сцепленных с элементами контура электрической цепи. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия … Справочник технического переводчика
потокосцепление — 113 потокосцепление Сумма магнитных потоков, сцепленных с элементами контура электрической цепи 114 потокосцепление самоиндукции Потокосцепление элемента электрической цепи, обусловленное электрическим током в этом элементе 115 (собственная)… … Словарь-справочник терминов нормативно-технической документации
потокосцепление — полный магнитный поток, пронизывающий электрический контур. Например, потокосцепление многовитковой катушки индуктивности равно сумме потоков через все её витки. Единица измерения вебер (Вб). * * * ПОТОКОСЦЕПЛЕНИЕ ПОТОКОСЦЕПЛЕНИЕ, полный… … Энциклопедический словарь
Потокосцепление — в электротехнике, полный магнитный поток (ψ), сцепленный с рассматриваемым контуром. По существу П. всегда совпадает с потоком в интегральном определении: Φ = = ψ, где В вектор магнитной индукции, рис.); при этом общий поток, или П., ω… … Большая советская энциклопедия
потокосцепление — visuminė magnetovara statusas T sritis Standartizacija ir metrologija apibrėžtis Visuminis elektrinio laidumo srovės, tekančios uždaruoju kontūru, stipris. atitikmenys: angl. current linkage vok. Flussverkettung, f rus. потокосцепление, n pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
потокосцепление — visuminė magnetovara statusas T sritis fizika atitikmenys: angl. current linkage vok. Flussverkettung, f rus. потокосцепление, n pranc. flux embrassé, m; flux magnétique embrassé, m … Fizikos terminų žodynas
Магнитный поток и потокосцепление
В пространстве, окружающем проводники, по которым протекает электрический ток, а также окружающем постоянные магниты, существует ряд физических явлений, проявляющихся в возникновении ЭДС в движущихся проводниках, механическом воздействии на постоянные магниты и проводники с током, находящиеся в этом пространстве и др.
Для определения количественных характеристик магнитного поля можно использовать любое его проявление, однако обычно используют явление электромагнитной индукции и механическое воздействие со стороны поля.
Если опыты в точке a продолжить, изменяя положение плоскости кольца в начальный момент, то можно установить, что существует такое его положение, при котором количество зарядов будет максимальным и всякое отклонение от этого положения будет приводить к их уменьшению пропорционально косинусу угла отклонения. Включая это условие в выражение (2) получим
Выражение (3) показывает, что магнитная индукция B является векторной величиной и ее направление совпадает с направлением нормали к плоскости пробного витка, при котором количество зарядов, протекающих через виток при его удалении на значительное расстояние, максимально.
Опыты с пробным витком (кольцом) можно проводить также и в пространстве катушки, подключенной к источнику постоянного тока. При этом вместо удаления витка можно просто выключать ток, т.к. в обоих случаях магнитный поток будет уменьшаться до нуля.
Из выражения (4) следует, что:
В описанных выше опытах с пробным витком (кольцом), он удалялся на такое расстояние, при котором исчезали всякие проявления магнитного поля. Но можно просто перемещать этот виток в пределах поля и при этом в нем также будут перемещаться электрические заряды. Перейдем в выражении (1) к приращениям
С помощью пробного витка можно исследовать все пространство вокруг магнита или катушки с током и построить линии, направление касательных к которым в каждой точке будет соответствовать направлению вектора магнитной индукции B (рис. 3)
Магнитные линии непрерывны и этот принцип можно математически представить в виде
Для того, чтобы определить полный магнитный поток, проходящий через поверхность всех витков, нужно сложить потоки, проходящие через поверхности отдельных витков, или, иначе говоря, сцепляющиеся с отдельными витками. Например, магнитные потоки, сцепляющиеся с четырьмя верхними витками катушки рис. 4, будут равны: Ф 1 =4; Ф 2 =4; Ф 3 =6; Ф 4 =8. Также, зеркально-симметрично с нижними.
То есть для приведенного на рисунке случая, двух зеркально-симметричных половинок катушки:
Ψ = 2(Ф 1 + Ф 2 + Ф 3 + Ф 4 ) = 48
Закон электромагнитной индукции
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Магнитный поток
Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.
Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.
Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.
Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).
Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.
Магнитным потоком через площадь S контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции B, площади поверхности S, пронизываемой данным потоком, и косинуса угла α между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):