Что называется линейным углом

ЛИНЕЙНЫЙ УГОЛ

Смотреть что такое «ЛИНЕЙНЫЙ УГОЛ» в других словарях:

Линейный крейсер «Мольтке» — Moltke Крейсер «Мольтке» в Нью Йорке в 1912 году Основная информация Тип … Википедия

УГОЛ — муж. перелом, излом, колено, локоть, выступ или залом (впадина) об одной грани. Угол линейный, всякие две встречные черты и промежуток их; угол плоскостной или в плоскостях, встреча двух плоскостей или стен; угол толстый, теловой, встреча в одной … Толковый словарь Даля

Линейный крейсер «Гнейзенау» — Линкор … Википедия

ЛИНЕЙНЫЙ ОПЕРАТОР — А в векторном пространстве L отображение, сопоставляющее каждому вектору е век poro множества D (содержащегося в L и наз. областью определения Л. о.) др. вектор, обозначаемый Ае (и называемый значением Л. о. на векторе е). Выполнены след. условия … Физическая энциклопедия

Линейный корабль — У этого термина существуют и другие значения, см. Линейный корабль (значения). «Дредноут» родоначальник класса линкоров … Википедия

Линейный корабль Слава — Необходимо перенести содержимое этой статьи в статью «Слава (броненосец)». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон <<к объединению>> … Википедия

Линейный крейсер «Фон-дер-Танн» — «Фон дер Танн» SMS Von der Tann Основная информация Тип Линейный крейсер … Википедия

Двугранный угол — и линейный угол двугранного угла … Википедия

Мольтке (линейный крейсер) — Линейный крейсер «Мольтке» Moltke … Википедия

Худ (линейный крейсер) — История Закладка киля: 1 сентября 1916 г. Спущен на воду: 22 а … Википедия

Источник

Двугранный угол (ЕГЭ 2022)

Дай нам 10 минут ты разберешься в одной из самых важных тем стереометрии.

И получишь за неё баллы на ЕГЭ!

Двугранный угол — коротко о главном

Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.

Угол между плоскостяминаименьший из двугранных углов, образованных при пересечении плоскостей.

Что называется линейным углом

Двугранный угол может быть и острым и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!

Что называется линейным углом

Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90<>^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90<>^\circ \).

Два способа найти угол между плоскостями:

Что называется линейным углом

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

Двугранный угол — определения

Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.

Что называется линейным углом

При этом прямая \( \displaystyle AB\) – это ребро двугранного угла, а полуплоскости \( \displaystyle \alpha \) и \( \displaystyle \beta \) – стороны или грани двугранного угла.

Двугранный угол получает обозначение по своему ребру: «двугранный угол \( \displaystyle AB\)».

С понятием двугранного угла тесно связано понятие угол между плоскостями.

Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.

Что называется линейным углом

Итак, внимание! Различие между двугранным углом и углом между плоскостями в том, что:

Двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!

Линейный угол двугранного угла

Как измерить двугранный угол?

Нужно поступить так: из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру.

Что называется линейным углом

В плоскости \( \displaystyle \alpha \) провели перпендикуляр \( \displaystyle MD\) к ребру \( \displaystyle AB\). Что получилось? Обычный, плоский угол \( \displaystyle \varphi \).

Вот этот угол и называется: линейный угол двугранного угла \( \displaystyle AB\).

Зачем этот линейный угол? Запомни, это очень ВАЖНО:

Двугранный угол измеряется величиной своего линейного угла.

То есть математически договорились, что если угол φ будет равен, к примеру \( \displaystyle 20<>^\circ \), то это будет автоматически означать, что угол \( \displaystyle AB\) равен \( \displaystyle 20<>^\circ \).

Вот и ключ к поиску величины двугранного угла и угла между плоскостями:

Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.

Ещё раз немного о названиях.

Прямой двугранный угол – двугранный угол, который равен \( \displaystyle 90<>^\circ \), то есть тот, у которого линейный угол равен \( \displaystyle 90<>^\circ \).

Как найти угол между плоскостями?

Найти угол между плоскостями можно двумя способами: геометрическим и алгебраическим.

Геометрический способ

При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.

Что называется линейным углом

Алгебраический способ

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

\( \displaystyle \cos \gamma =\frac<<_<1>><_<2>>+<_<1>><_<2>>+<_<1>><_<2>>><\sqrt^<2>+B_<1>^<2>+C_<1>^<2>>\sqrt^<2>+B_<2>^<2>+C_<2>^<2>>>\)

Подробнее про уравнение плоскости ты можешь прочитать в статье «Расстояние от точки до плоскости»!

Какой же способ лучше? Зависит от задачи.

А если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.

Но тогда нужно очень твёрдо знать формулы и не делать арифметических ошибок при многочисленных подсчётах – ведь придётся искать \( \displaystyle <_<1>>,<_<1>>,<_<1>>,<_<2>>,<_<2>>,<_<2>>\), а потом ещё и \( \displaystyle \cos \gamma \).

Давай разберём несложную задачу для примера. Мы применим оба метода к одной и той же задаче.

Решение геометрическим способом

В правильной треугольной пирамиде боковое ребро в три раза больше ребра основания. Найти двугранный угол при основании пирамиды.

Источник

Двугранный угол. Линейный угол двугранного угла

Что называется линейным углом Что называется линейным углом Что называется линейным углом Что называется линейным углом

Что называется линейным углом

Что называется линейным углом

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей прямой, которая их ограничивает.

Полуплоскости α и β — грани двугранного угла.
C — ребро двугранного угла (рис.33)

Что называется линейным углом

Линейным углом двугранного угланазывается угол между лучами, по которым плоскость, перпендикулярная ребру двугранного угла, пересекает его грани.

Плоскость линейного угла перпендикулярна каждой грани двугранного угла (рис.34)

Что называется линейным углом

Способы построения линейного угла:

На ребре выбирается точка, через нее в гранях проводятся лучи, перпендикулярные ребру. Угол, образованный этими лучами, и будет искомым линейным углом (рис.35)

Что называется линейным углом
∠AMB — линейный

Источник

Двугранный угол

Урок 22. Геометрия 10 класс ФГОС

Что называется линейным углом

Что называется линейным углом

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что называется линейным углом

Что называется линейным углом

Что называется линейным углом

Конспект урока «Двугранный угол»

· введем понятие двугранного угла;

· узнаем о том, как определить линейный угол рассматриваемой геометрической фигуры.

Для начала давайте вспомним, что понимали под углом в планиметрии. Итак, углом на плоскости мы называлигеометрическую фигуру, образованную двумя лучами, исходящими из одной точки.

В стереометрии наряду с такими углами рассматривается еще один вид углов, которые называют двугранными углами. Но прежде чем мы введем понятие двугранного угла, давайте вспомним одну из аксиом планиметрии: «любая прямая, проведенная в данной плоскости, разделяет эту плоскость на две полуплоскости».

Пусть есть прямая а, которая лежит в некоторой плоскости. Тогда можно указать две части этой плоскости, каждая из которых вместе с прямой а называется полуплоскостью.

Что называется линейным углом

Прямая а называется границей для каждой из полуплоскостей. В отличие от планиметрии, в пространстве две полуплоскости с общей границей прямой а, могут не лежать в одной плоскости.

Давайте представим себе, что мы перегнули плоскость по прямой а так, что две полуплоскости с границей а оказались уже не лежащими в одной плоскости. Полученная фигура и есть двугранный угол.

Определение. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости.

Что называется линейным углом

Полуплоскости, образующие двугранный угол, называются его гранями. У двугранного угла две грани, отсюда и название – двугранный угол.

Прямая а – общая граница полуплоскостей – называется ребром двугранного угла.

Двугранный угол, ребро которого есть прямая AB, а гранями являются полуплоскости α и β, обозначают так Что называется линейным углом. Обратите внимание, две средние буквы в обозначении – это ребро данного двугранного угла.

Или, если двугранный угол с ребром AB, на разных гранях которого отмечены точки C и D, то двугранный угол называют CABD.

В обыденной жизни мы часто встречаемся с предметами, имеющими форму двугранного угла. Представление о двугранном угле нам дают: полураскрытая книга, открытый ноутбук, двускатная крыша здания, стена комнаты совместно с полом и т.д.

Напомню, что углы на плоскости измеряются в градусах.

Для измерения двугранного угла вводится понятие линейного угла. Пусть точка О лежит на ребре l двугранного угла. В каждой грани из этой точки проведем лучи ОА и ОB перпендикулярно к ребру l. Угол АОB, сторонами которого служат лучи ОА и ОB, называется линейным углом данного двугранного угла.

Что называется линейным углом

Определение. Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.

На рисунке вы видите изображение линейного угла AOB двугранного угла с ребром l. Так как ОА перпендикулярно l и ОB перпендикулярно l, то плоскость, в которой лежат лучи ОА и ОB, перпендикулярна к прямой l. Таким образом, плоскость линейного угла перпендикулярна к ребру двугранного угла. Очевидно, двугранный угол имеет бесконечное множество линейных углов.

Верно следующее утверждение: все линейные углы двугранного угла равны между собой.

Докажем это утверждение.

Рассмотрим два линейных угла А О Б и А один О один Б один двугранного угла,ребро которого эль. Лучи ОА и О один А один лежат в одной грани и перпендикулярны ребру эль. Следовательно, они параллельны. Аналогично и лучи ОБ и О один Б один лежат в одной грани и перпендикулярны ребру эль. Значит, они параллельны.

Что называется линейным углом

Отложим на лучах ОА и О1A1 равные отрезки OM и O1M1 соответственно, а на лучах ОB и O1B1 – равные отрезки ON и O1N1 соответственно.

Так как OM равно O1M1 и OM параллельно O1M1, то четырехугольник OMM1O1 – параллелограмм. Тогда ОО1 равно MM1 и OO1 параллельно MM1 по свойствам параллелограмма.

Так как ON равно O1N1 и ON параллельно O1N1, то четырехугольник ONN1O1 – параллелограмм. Тогда OO1 равно NN1 и OO1 параллельно NN1 по свойствам параллелограмма. Отсюда, OO1 равно NN1 и OO1 параллельно NN1.

Видим, что тогда MM1 равно NN1 и MM1 один параллельно NN1, т.е. четырехугольник NMM1N1 – параллелограмм. Следовательно, NM равно N1M1.

Рассмотрим треугольники OMN и O1M1N1. Они равны по трем сторонам. Отсюда следует, что угол MON равен углу M1O1N1. А значит, и угол АОB равен углу A1O1B1. Что и требовалось доказать.

Это утверждение можно доказать и быстрее. Достаточно было при рассмотрении линейных углов AOB и A1O1B1 заметить, что так как лучи ОА и O1A1 лежат в одной грани и перпендикулярны к прямой OO1, то они параллельны, а, значит сонаправлены. Точно также лучи ОB и O1B1 лежат в одной грани и перпендикулярны к прямой OO1, следовательно они параллельны, и, значит сонаправлены. Отсюда вытекает, что угол A1O1B1 равен углу AOB (как углы с сонаправленными сторонами). Что и требовалось доказать.

Определение. Градусной мерой двугранного угла называется градусная мера его линейного угла.

Это говорит о том, что, сколько градусов содержится в линейном угле, столько же градусов содержится в его двугранном угле.

Что называется линейным углом

На рисунке вы видите изображение двугранного угла, градусная мера которого равна 50°. Обычно говорят коротко: «Двугранный угол равен 50°».

Различают следующие виды двугранных углов.

Двугранный угол называется прямым, если его линейный угол равен 90°.

Двугранный угол называется острым, если его линейный угол острый, т.е. 90° (расположен в промежутке от 90 до 180 градусов).

Что называется линейным углом

Если грани двугранного угла лежат в одной плоскости, то он называется развернутым.

В дальнейшем под двугранным углом будем понимать всегда тот, линейный угол φ которого удовлетворяет условию 0° Оцените видеоурок

Источник

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Понятие двугранного угла и угла между плоскостями

Напомним, что в планиметрии углом называют фигуру, состоящую из точки и двух лучей, выходящих из нее. Сама точка именуется вершиной угла, а лучи – сторонами угла.

По аналогии в стереометрии рассматривается схожая фигура – двугранный угол. Он состоит из двух полуплоскостей, которые исходят из одной прямой. Каждая из этих полуплоскостей именуется гранью двугранного угла, а их общая прямая – это ребро двугранного угла.

Для обозначения двугранного угла достаточно указать две точки на его ребре, а также ещё по одной точке на каждой грани. Например, на следующем рисунке показан угол САВD:

Двугранные углы часто встречаются в обычной жизни. Например, его образуют двухскатные крыши домов. В стереометрии двугранные угла можно найти в любом многограннике.

Двугранные углы можно измерять. Для этого надо выбрать произвольную точку на ребре угла и на каждой грани построить перпендикуляр, проходящий через эту точку. Через эти два перпендикуляра можно построить единственную плоскость. Угол между двумя перпендикулярами и принимается за величину двугранного угла.

Отдельно отметим, что плоскость, проходящая через перпендикуляры (на рисунке выше это γ) перпендикулярна ребру угла АВ. Это вытекает из признака перпендикулярности прямой и плоскости. Действительно, АВ⊥ВС и АВ⊥BD, поэтому и АВ⊥γ. Построенный угол ∠СBD называют линейным углом двугранного угла.

Понятно, что в каждом двугранном угле можно построить сколько угодно линейных углов:

Здесь помимо ∠ВСD построены линейные углы ∠В’С’D’ и ∠В’’С’’D’’. Однако все эти углы имеют одинаковую градусную меру. Сравним, например, ∠ВСD и ∠В’С’D’. Так как BD⊥AB и B’D’⊥АВ, то BD||B’D’. Аналогично можно прийти к выводу, что ВС||B’C’. Получаем, что стороны углов ∠ВСD и ∠В’С’D’ – это сонаправленные лучи, а потому ∠ВСD и ∠В’С’D’ одинаковы.

Двугранные углы, как и обычные углы, можно разделить на острые (их градусная мера меньше 90°), прямые (они в точности равны 90°) и тупые (которые больше 90°).

Если две плоскости пересекаются, то они образуют сразу 4 двугранных угла. Если среди них есть острый угол, то его величина считается углом между плоскостями. Если же все образуется 4 прямых двугранных угла, то угол между плоскостями принимается равным 90°.

Перпендикулярность плоскостей

В частном случае, когда угол составляет 90°, говорят, что пересекающиеся плоскости перпендикулярны.

Перпендикулярны друг другу пол и стены в доме, смежные грани кубика, стенки коробки. Существует особый признак перпендикулярности плоскостей.

Действительно, пусть плоскости α и β пересекаются по линии n, и в β есть такая прямая m, что m⊥α. Тогда m и n должны пересекаться в какой-нибудь точке К. Проведем в плоскости α через К прямую р, перпендикулярную n. Ясно, что m⊥р, ведь m⊥α. Получается, угол между m и р как раз и является углом между плоскостями α и β, ведь m⊥n и р⊥n. И этот угол равен 90°, ведь m⊥p, ч т. д.

Из доказанного признака вытекает следующее утверждение:

Прямоугольный параллелепипед

Ранее мы уже узнали про параллелепипед. Это фигура с 6 гранями, каждая из которых представляет собой параллелограмм. Особый интерес представляет его частный случай – прямоугольный параллелепипед.

Такую форму имеют многие шкафы, другие предметы мебели, коробки для обуви, небоскребы. Изображают прямоугольный параллелепипед так:

Для обозначения вершин параллелепипеда применяют латинские буквы. Очень часто для вершин одной грани используют 4 буквы без индекса (на рисунке выше это А, В, С, D), а другие 4 вершины обозначают такими же буквами, но с нижним индексом 1: А1, B1, C1 и D1. При этом одноименные вершины (например, А и А1) находятся на одном ребре, которое располагается на рисунке вертикально.

Докажем некоторые свойства прямоугольного параллелепипеда.

Например, ребро АD пересекается с гранями АВВ1А1 и CDD1C1. Значит, оно перпендикулярно этим граням (точнее говоря, оно перпендикулярно плоскостям, проходящим через эти грани). Действительно, AD⊥DC, ведь ∠ADC является углом в прямоугольнике АВСD и потому он прямой. Аналогично и AD⊥DD1, ведь и ADD1A1 – прямоугольник. Получается, что ребро AD перпендикулярно 2 прямым в грани CDD1C1 (которые при этом пересекаются), и потому оно перпендикулярно и всей грани. То же самое можно продемонстрировать для любого ребра прямоугольного параллелепипеда и любой грани, которую она пересекает.

Эти грани пересекаются по ребру А1D1. Этому ребру в свою очередь перпендикулярны ребра АА1 и А1В1, лежащие в гранях ADD1A1 и A1D1C1B1. Значит, ∠АА1В1 и будет углом между этими гранями. Но он составляет 90°, то есть грани перпендикулярны, ч. т. д.

Хотя у прямоугольного параллелепипеда есть 12 граней, многие из них имеют одинаковую длину. Поэтому для описания размеров этой фигуры достаточно указать только три параметра. Обычно их называют длиной, шириной и высотой:

Эти параметры также называют измерениями прямоугольного параллелепипеда. Зная их, можно вычислить длину диагонали прямоугольного параллелепипеда. Для этого используется следующая теорема:

Действительно, пусть есть прямоугольный параллелепипед АВСDA1B1C1D1. Назовем ребро AD его длиной, АВ – шириной, а ВВ1 – высотой. Пусть необходимо найти длину диагонали В1D:

Сначала построим отрезок BD и рассмотрим ∆ABD. Он прямоугольный, и потому для него верна теорема Пифагора:

Теперь перейдем к ∆В1ВD. Так как ребро BB1 перпендикулярно грани ABCD, то ∠В1ВD – прямой. Тогда и ∆В1ВD – прямоугольный, а потому и для него можно записать теорему Пифагора:

Дополнительно отметим уже известный нам факт, что тот прямоугольный параллелепипед, у которого все стороны одинаковы, именуется кубом. Можно дать и такое определение куба:

Трехгранный угол

Выберем в пространстве произвольную точку K. Далее из нее проведем три луча КА, КВ и КС так, чтобы они не находились в одной плоскости:

В результате мы получили фигуру, которую именуют трехгранным углом. Она состоит их трех плоских углов: ∠АКС, ∠АКВ и ∠ВКС. Эти углы так и называются – плоские углы трехгранного угла. Сам же трехгранный угол обозначают четырьмя буквами: КАВС. Обратите внимание, что через каждую пару лучей КА, КВ и КС можно провести плоскость. Таким образом, название «трехгранный» угол показывает, что в точке К сходятся три грани. Чаще всего в стереометрии такой угол возникает при рассмотрении вершин тетраэдра, в котором есть сразу четыре трехгранных угла:

Доказательство. Пусть в пространстве из точки D выходят лучи AD, BD и CD. Важно понимать, что мы можем свободно «передвигать» точки А, В и С по лучам, и величина плоских углов при этом меняться не будет. Если среди плоских углов нет наибольшего, то теорема очевидно выполняется. Поэтому надо рассмотреть лишь случай, когда один из углов – наибольший. Пусть им будет ∠BDC:

Это возможно сделать, ведь ∠BDC > AD, поэтому внутри ∠BDC можно провести луч DK. Далее «сместим» точку А на луче АD так, чтобы DK = AD. Естественно, что при этом плоские углы трехгранного угла никак не изменятся, также как останется верным равенство

Сравним ∆ADC и ∆DKC. У них есть общая сторона DC, одинаковы стороны DK и AD, а также совпадают углы между ними. Значит, эти треугольники равны, и тогда можно записать, что:

Теперь сравним ∆ABD и ∆DBK. У них BD – общая сторона, а DK = AD. При этом BK 1 параллельны друг другу

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *