Что называется красной границей фотоэффекта
Фотоэффект. Красная граница фотоэффекта.
Фотоэффектомназывается испускание веществом электронов при поглощении им квантов электромагнитного излучения (фотонов).
Красная граница фотоэффекта
Красной границей фотоэффекта называется минимальная частота и соответствующая ей максимальная длина волны, при которой наблюдается фотоэффект. Почему она так называется – красная граница?
Если мы возьмем свет такой частоты, при которой будет наблюдаться фотоэффект, и будем ее уменьшать, мы будем по оси частоты смещаться влево, пока не дойдем до предела, при котором фотоэффект прекратится. Можно поставить рядом ось длин волн.
Если мы будем так же смещаться в видимом спектре, то мы будем двигаться к красному свету, который является граничным для нашего глаза. Свет меньших частот или бόльших длин волн мы уже не видим. Граница видимости соответствует красному цвету.
Для фотоэффекта предельная частота не обязательно соответствует красному цвету, но по аналогии называется красной границей (см. рис. 11).
Рис. 11. Красная граница фотоэффекта и граница спектра видимого света
– красная граница фотоэффекта.
32) Уравнение Эйнштейна. Технические устройства основанные на использовании фотоэффекта.
Уравнение Эйнштейна описывает связь между энергией и массой любого вещества.
E | энергия (тела, излучения, поля и т. д.) | Дж |
m | масса, отвечающая энергии E, | кг |
c | скорость света в вакууме, 3 × 10 8 | м/с |
Каждой массе соответствует определенная энергия и наоборот. Каждому изменению массы соответствует определенное изменение энергии и наоборот.
Практическое применение фотоэффекта в технике может быть разнообразным. В частности, внешний фотоэффект применяется для воспроизведения звука, например, в кино. Кроме того, созданы специальные приборы для измерения яркости, силы света, освещенности. Явление фотоэффекта задействовано в управлении производственными процессами. Для этого есть специальные приборы, называемые фотоэлементами.
33)Строение атома: планетарная модель и модель Бора. Квантовые постулаты Бора.
Поглощение и испускание света атомом. Квантование энергии.
Постулаты Бора:1.Атом может находиться в особых квантовых стационарных состояниях, каждому из которых соответствует своя определенная энергия. В этих состояниях атом не излучает (и не поглощает) энергию.
Стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны. Номера стационарных орбит и энергетических уровней (начиная с первого) в общем случае обозначаются латинскими буквами: п, k и т. д. Радиусы орбит, как и энергии стационарных состояний, могут принимать не любые, а определённые дискретные значения. Первая орбита расположена ближе всех к ядру.
Согласно закону сохранения энергии, энергия излучённого фотона равна разности энергий стационарных состояний:
Из этого уравнения следует, что атом может излучать свет только с частотами
Атом может также поглощать фотоны. При поглощении фотона атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией.Состояние атома, в котором все электроны находятся на стационарных орбитах с наименьшей возможной энергией, называется основным. Все другие состояния атома называются возбуждёнными.У атомов каждого химического элемента имеется свой характерный набор энергетических уровней. Поэтому переходу с более высокого энергетического уровня на более низкий будут соответствовать характерные линии в спектре испускания, отличные от линий в спектре другого элемента.Совпадение линий излучения и поглощения в спектрах атомов данного химического элемента объясняется тем, что частоты волн, соответствующих этим линиям в спектре, определяются одними и теми же энергетическими уровнями. Поэтому атомы могут поглощать свет только тех частот, которые они способны излучать.
Что такое красная граница фотоэффекта: понятие о фотоэффекте, уравнение Эйнштейна, пример решения задачи
В конце XIX века Генрих Герц открыл явление, позволяющее из световой энергии добывать электричество. Оно получило название фотоэффекта. В данной статье рассмотрим подробнее этот эффект, а также ответим на вопрос, что такое красная граница фотоэффекта.
Понятие о фотоэффекте
Перед тем, как ответить на вопрос, что такое красная граница фотоэффекта, необходимо поближе познакомиться с этим физическим явлением. Как можно объяснить это явление? Определение фотоэффекту можно дать следующее: это процесс образования свободных от атомных ядер электронов в результате облучения вещества светом.
Вам будет интересно: Сумма бесконечной геометрической прогрессии убывающей и парадокс Зенона
Этот эффект был открыт в 1887 году Герцем. В 1888 году русский физик, Александр Столетов, провел ряд опытов, в которых показал, что этот процесс возникает мгновенно после попадания света на пластину конденсатора. Также ученый установил первый закон фотоэффекта: увеличение интенсивности света приводит к линейному росту тока в цепи.
В 1905 году Эйнштейн опубликовал статью, в которой объяснил фотоэффект квантовым характером взаимодействия света с веществом.
Уравнение Эйнштейна для фотоэффекта
Современное понимание фотоэффекта можно описать в виде следующей модели: падая на вещество, фотон встречается с электроном некоторого атома, электрон полностью поглощает фотон, принимая от него всю энергию. Если эта энергия больше некоторого значения, то электрон выходит за область притяжения атомного ядра и становится свободным.
Описанный процесс выражается следующим равенством энергий:
Что такое красная граница фотоэффекта?
Обратим внимание на уравнение Эйнштейна, приведенное в предыдущем пункте. Из него следует, что если энергия фотона будет меньше работы выхода электрона, то никакого фотоэффекта происходить не будет. Это означает, что явление наблюдается только в том случае, если:
Частота v0, соответствующая величине A, получила название красной границы фотоэффекта. Длина волны, соответствующая ей, вычисляется по формуле:
λ0 = c/v0 или λ0 = c*h/A.
Если говорить о λ0 для металлов, то облучение красным цветом не может привести к появлению фотоэффекта ни для одного из них, поскольку энергия «красных» фотонов слишком низка, чтобы «вырвать» электрон из атома. Наибольшим значением λ0 обладают щелочные металлы. Для них красная граница находится в области зеленого и желтого цвета (λ0≈520-580 нм).
Решение задачи на определение типа элемента
Разобравшись, что такое красная граница фотоэффекта, решим одну интересную задачу для закрепления полученных знаний. Это поможет лучше разобраться в этом физическом явлении.
В некоторой лаборатории решили воспользоваться фотоэффектом для определения вида химического элемента. До начала эксперимента было установлено, что это щелочной металл первой группы таблицы Д. И. Менделеева. Изменяя значение длины волны света, которым облучали металл, определили, что фотоэффект начинает наблюдаться при 525 нм. С каким элементом работали в лаборатории?
Выпишем соответствующую формулу для красной границы фотоэффекта:
Подставляя соответствующие константы и значение λ0 в выражение, получаем значение работы выхода электрона для неизвестного щелочного металла:
A = c*h/λ0 = 3*108*4,13567*10-15/(525*10-9) = 2,363 эВ
Отметим, что значение постоянной Планка было подставлено в единицах эВ*с.
Работа выхода электрона A является уникальной характеристикой для каждого химического элемента. Ее можно посмотреть в соответствующей таблице. Так, для щелочных металлов характерны такие значения в эВ:
Эти данные показывают, что найденное нами значение A соответствует натрию.
Физика. 11 класс
Конспект урока
Урок 22. Фотоэффект
Перечень вопросов, рассматриваемых на уроке:
Фотоэффект – это вырывание электронов из вещества под действием света.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.
Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.
Основная и дополнительная литература по теме урока:
1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.
2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.
4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.
Теоретический материал для самостоятельного изучения
В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.
Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.
Коэффициент пропорциональности получил название постоянной Планка, и она равна:
После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.
Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.
В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.
Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.
Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.
Схема установки для изучения законов фотоэффекта
Зависимость силы тока от приложенного напряжения
Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.
Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.
Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.
где Ав – работа выхода электронов;
h – постоянная Планка;
λкр – длина волны, соответствующая красной границе.
Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.
Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.
Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:
где — максимальная кинетическая энергия электронов;
Е – заряд электрона;
– задерживающее напряжение.
Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:
В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».
Примеры и разбор решения заданий
1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.
2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.
Запишем уравнение для фотоэффекта через длину волны:
Условие связи красной границы фотоэффекта и работы выхода:
Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:
Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:
Подставляя численные значения, получаем: λ ≈ 215 нм.
Фотоэффект
теория по физике 🧲 квантовая физика
Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.
Что такое фотоэффект
Фотоэффект — испускание электронов из вещества под действием падающего на него света.
Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.
Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.
Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.
Если между световым пучком и отрицательно заряженной пластиной поставить
Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.
Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.
Законы фотоэффекта
Чтобы получить более полное представление о фотоэффекте, выясним, от чего зависит количество электронов, вырванных светом с поверхности вещества, а также, от чего зависит их скорость, или кинетическая энергия. Выяснить все это нам помогут эксперименты.
Первый закон фотоэффекта
Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.
В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.
Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.
Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.
Первый закон фотоэффекта:
Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.
Второй закон фотоэффекта
Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.
Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.
Второй закон фотоэффекта:
Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.
Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.
Теория фотоэффекта
Все попытки объяснить явление фотоэффекта электродинамической теорией Максвелла, согласно которой свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались тщетными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему свет способен вырывать электроны лишь при достаточно малой длине волны.
В попытках объяснить это явление физик Макс Планк предложил, что атомы испускают электромагнитную энергию отдельными порциями — квантами, или фотонами. И энергия каждой порции прямо пропорциональна частоте излучения:
h — коэффициент пропорциональности, который получил название постоянной Планка. Она равна 6,63∙10 –34 Дж∙с.
Пример №1. Определите энергию фотона, соответствующую длине волны λ = 5∙10 –7 м.
Энергия фотона равна:
Выразим частоту фотона через скорость света:
Идею Планка продолжил развивать Эйнштейн, которому удалось дать объяснение фотоэффекту в 1905 году. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Причем энергия Е каждой порции излучения, по его расчетам, полностью соответствовала гипотезе Планка.
Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частиц. Лишь фотоэффект позволил доказать прерывистую структуру света: излученная порция световой энергии Е = hν сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.
Кинетическую энергию фотоэлектрона можно найти, используя закон сохранения энергии. Энергия порции света hν идет на совершение работы выхода А и на сообщение электрону кинетической энергии. Отсюда:
Работа выхода — минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Полученное выражение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии hν в пучке света и поэтому определяет количество вырванных электронов. Скорость же электронов согласно зависит только от частоты света и работы выхода, которая определяется типом металла и состоянием его поверхности. От интенсивности освещения кинетическая энергия фотоэлектронов не зависит.
Для каждого вещества фотоэффект наблюдается лишь при освещении его светом с минимальной частотой волны νmin. Это объясняется тем, что для вырывания электрона без сообщения ему скорости нужно выполнять как минимум работу выхода. Поэтому энергия кванта должна быть больше этой работы:
Предельную частоту νmin называют красной границей фотоэффекта. При этой частоте фотоэффект уже наблюдается.
Красная граница фотоэффекта равна:
Минимальной частоте, при которой возможен фотоэффект для данного вещества, соответствует максимальная длина волны, которая также носит название красной границы фотоэффекта. Это такая длина волны, при которой фотоэффект еще наблюдается. Обозначается она как λmах или λкр.
Максимальная длина волны, при которой еще наблюдается фотоэффект, равна:
Работа выхода А определяется родом вещества. Поэтому и предельная частота vmin фотоэффекта (красная граница) для разных веществ различна. Отсюда вытекает еще один закон фотоэффекта.
Третий закон фотоэффекта:
Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.
Пример №2. Чему равна красная граница фотоэффекта νmin, если работа выхода электрона из металла равна A = 3,3∙10 –19 Дж?
Применим формулу для вычисления красной границы фотоэффекта: