Что называется геометрической фигурой
Общая характеристика
Предметы в геометрическом изображении состоят из отдельных частей: точек, линий, лучей, отрезков и вершин. Отдельно взятый предмет имеет свое предназначение.
Основные понятия о составляющих
Когда все точки фигуры принадлежат одной плоскости, она является плоской. К ней относятся отрезок, прямоугольник. Существуют геометрические объекты, не являющиеся разновидностью плоскости, — куб, шар, пирамида, призма.
Минимальным объектом геометрии является точка. Определение того, какой она должна быть известно из школьного математического курса. Учебник характеризует ее как объект, не имеющий измерительных особенностей. Точка (Т) не содержит стандартных свойств: высоты, длины, радиуса, важным является только ее расположение. Обозначается числом или большой заглавной буквой. Например, точка называется D, E, F или 1, 2, 3. Несколько точек бывают отмечены разными цветами или буквами для удобного различия.
Линия состоит из множества точек. Измеряется длина этого составляющего объекта и обозначается маленькими буквами (abc).
Виды линий:
Задания из школьной программы кажутся школьникам скучными, неинтересным, но эти азы являются основой составления фигур простых и более сложных.
Существуют подвиды прямой линии: пересекающиеся, содержащие общую точку и когда две прямые линии соединяются в одной точке.
Луч в математике представляет часть прямой, имеющей начальную точку, но не имеющую конец. Это продолжение в одну сторону. Если Т разделяет линию пополам — получается два луча. Лучевые линии совпадают, когда расположены на одной прямой, начинаются в точке или направляются в одну сторону.
Отрезок представляет составную часть прямой, ограниченной двумя точками — она имеет начало и конец, поэтому измеряется. Длина отрезка представляет расстояние между его первой и последней точками. Через одну Т проводится бесконечное число линий, а через две — кривые и только одна прямая.
Стандартные объекты
К основным фигурам геометрии на плоскости относятся прямоугольник, треугольник, квадрат, многоугольник и круг. Прямоугольник выглядит как фигура, состоящая из четырех сторон и четырех прямых углов (ПУ). Противоположные стороны равны между собой. В математике прямоугольник обозначается четырьмя латинским заглавными буквами. Все ПУ расположены под 90 градусов. Прямоугольник с равными, одинаковыми сторонами называется квадратом.
Фигура, имеющая 3 стороны и столько же углов (вершин), называется треугольником. Существует классификация этой фигуры по типу У.
Виды треугольника в зависимости от угла (У):
Геометрическая фигура с углами разной формы называется многоугольником. Его вершины представлены точками, соединяющими отрезками.
Радиус круга — промежуток от середины окружности до любой ее точки. Диаметр — это отрезок, соединяющий две точки окружности, проходящий через ее середину.
Параллелепипед — это призма, у которой основанием является параллелограмм. Когда все ребра параллелепипеда равны, получается куб.
Многогранная фигура, у которой одна грань является многоугольником, а остальные грани (боковые) — треугольники с общей вершиной, называется пирамидой.
Семиугольник (гептагон) — это многоугольник с 7 углами. Многоугольник представляет замкнутую ломанную линию.
Основные фигуры перечислены, но геометрия включает еще сложные объекты, использующиеся в различных областях жизни.
Сложные модели
В сложной геометрии выделяют фигуры с пространственным, плоским и объемным наполнением. Существует понятие геометрического тела, 3D-моделирование и проекция.
Определение тела и пространства
Геометрическое тело (ГТ) представляет часть пространства, отделенное замкнутой поверхностью наружной границы. Это понятие относится к компактному множеству точек, а две из них соединяют отрезком, проходящим внутри границы тела. Внешняя граница ГТ является его гранью, которых может быть несколько. Множество плоских граней определяет вершины и ребра ГТ. Все геометрические тела делятся на многогранники и тела вращения.
Тела вращения — объемные тела, образующиеся из-за вращения плоской фигуры, ограниченной кривой, вокруг оси. Эта ось расположена в той же плоскости. При вращении контуров фигур вокруг собственной оси возникает поверхность вращения, а если вращать заполненные контуры — возникают объекты (шар).
Шар представляет множество точек, расположенных от данной точки на небольшом пространстве. Точка является центром шара, а расстояние ограничено радиусом.
В сферу геометрии входят плоские (двухмерные) и объемные пространственные фигуры (трехмерные).
Плоские фигуры представляют точка, круг, полукруг, окружность, овал, прямоугольник, квадрат, луч, ромб, трапеция.
Существуют двухмерные фигуры (2D), представленные углом, многоугольником, четырехугольником, окружностью, кругом, эллипсом и овалом. Объекты 3D выделены двугранным или многогранным углом. Среди них известны призма, параллелепипед, куб, антипризма, пирамида, тетраэдр икосаэдр, бипирамида, геоид, эллипсоид, сфера шар и другие. Плоские фигуры изучает планиметрия, а объемные — стереометрия.
Объемные фигуры:
Конус образуется из треугольника с прямыми углами, при вращении его вокруг одного из катетов. Тороид возникает из замкнутой плоскости (окружности), вращающейся вокруг прямой и не пересекающей ее. Многогранник называется полиэдр, представляет замкнутую поверхность, состоящую из многоугольников.
Виды многогранников:
В школьной программе имеются специальные разделы геометрии, позволяющие распределить знания и не путать их в будущем. Это касается плоских, объемных фигур — одни изучает стереометрия, другие планиметрия.
Познавательные игрушки детям
Геометрия является наукой, которой можно знакомить детей с раннего возраста. Лучше распечатать картинки, геометрические фигуры для детей, затем нарисовать их вместе на чистом листе. Малышу первого года подобное занятие будет не очень интересным и понятным, а у дошкольника вызовет интерес, особенно если объекты изучения будут разноцветными или в необычном исполнении.
Основной материал для обучения детей:
Увлекательные, забавные, задорные стихи «Веселая геометрия для малышей» помогут детям быстро познакомиться и усвоить много важной информации о фигурах и размерах предметов. Веселые стишки помогут юному читателю соотнести малопонятные геометрические знания с обыденными предметами обихода. Например, в женской юбке представлена трапеция, в блюдце— круг, а в трубе цилиндр.
Учить детей начинают с плоских фигурок, сделанных из цветной бумаги или фетра. Не нужно ограничивать ребенка в фантазии, ведь он различает фигуры по цветам и форме — треугольник, овал, круг, ромб, квадрат. Увлекательным будет занятие с использованием сортеров, пирамидок из различных геометрических объектов.
Ближе к дошкольному возрасту переходят на объемные фигуры, кубики, конусы, кольца и цилиндры. В школьном возрасте знания накопятся, и дети будут осознанно различать равнобедренный, равносторонний треугольник, три понятия: луч, отрезок, окружность.
Раздел математики геометрия изучает пространственные отношения и формы. Фигура как понятие, рассмотренное во всех учебниках геометрии, является пространственной формой.
Геометрию можно обнаружить везде — в любых окружающих предметах. Это современные здания, архитектурные строения, формы, космическая станция, интерьер квартиры, подводные лодки.
Математические знания являются профессионально важными для современных специальностей: дизайнеров и конструкторов, рабочих и ученых. Без знания основ геометрии невозможно построить здание или отремонтировать квартиру.
Свойства геометрических фигур на плоскости
Лекция 5. Понятие геометрической фигуры.
В окружающем нас мире существует множество материальных предметов разных форм и размеров: жилые дома, детали машин, книги, украшения, игрушки и т. д.
В геометрии вместо слова предмет говорят геометрическая фигура. Геометрическая фигура (или кратко: фигура) – это мысленный образ реального предмета, в котором сохраняются только форма и размеры, и только они принимаются во внимание.
Геометрические фигуры разделяют на плоские и пространственные. В планиметрии рассматриваются только плоские фигуры.
Плоской называется такая геометрическая фигура, все точки которой лежат на одной плоскости. Представление о такой фигуре даёт любой рисунок, сделанный на листе бумаги.
Геометрические фигуры бывают весьма разнообразны, например, треугольник, квадрат, окружность и др.:
Часть любой геометрической фигуры (кроме точки), также является геометрической фигурой. Объединение нескольких геометрических фигур, тоже будет являться геометрической фигурой. На рисунке ниже левая фигура состоит из квадрата и четырёх треугольников, а правая фигура состоит из окружности и частей окружности:
Основные геометрические фигуры
К основным геометрическим фигурам на плоскости относятся точка и прямая линия. Отрезок, луч, ломаная линия — простейшие геометрические фигуры на плоскости.
Точка — это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур) в любом изображении или чертеже.
Всякая более сложная геометрическая фигура — это множество точек, которые обладают определенным свойством, характерным только для этой фигуры.
Прямую линию, или прямую, можно представить себе как бесчисленное множество точек, которые расположены на одной линии, не имеющей ни начала, ни конца. На листе бумаги мы видим только часть прямой линии, так как она бесконечна. Прямая изображается так:
Часть прямой линии, ограниченная с двух сторон точками, называется отрезком прямой, или отрезком. Отрезок изображается так:
Луч — это направленная полупрямая, которая имеет точку начала и не имеет конца. Луч изображается так:
Если на прямой вы поставили точку, то этой точкой прямая разбивается па два луча, противоположно направленных. Такие лучи называются дополнительными.
Ломаная линия — это несколько отрезков, соединенных между собой так, что конец первого отрезка является началом второго отрезка, а конец второго отрезка — началом третьего отрезка и т. д., при этом соседние (имеющие одну общую точку) отрезки расположены не на одной прямой. Если конец последнего отрезка не совпадает с началом первого, то такая ломаная линия называется незамкнутой. Ломаная, не имеющая самопересечений, называется простой.
Это – трехзвенная ломаная линия.
Если конец последнего отрезка ломаной совпадает с началом первого отрезка, то такая ломаная линия называется замкнутой. Примером замкнутой ломаной служит любой многоугольник:
Четырехзвенная замкнутая ломаная линия — четырехугольник
Трехзвенная замкнутая ломаная линия — треугольник
Плоскость, как и прямая, — это первичное понятие, не имеющее определения. У плоскости, как и у прямой, нельзя видеть ни начала, ни конца. Мы рассматриваем только часть плоскости, которая ограничена замкнутой ломаной линией.
Примером плоскости является поверхность вашего рабочего стола, тетрадный лист, любая гладкая поверхность. Плоскость можно изобразить как заштрихованную геометрическую фигуру:
Лекция 6. Выпуклые и невыпуклые фигуры.
Геометрическая фигура называется плоской, если все тонки фигуры принадлежат одной плоскости.
Примером плоских геометрических фигур являются: прямая, отрезок, круг, различные многоугольники и др. Не являются плоскими такие фигуры, как шар, куб, цилиндр, пирамида и др.
На плоскости различают выпуклые и невыпуклые фигуры.
Геометрическая фигура называется выпуклой, если она целиком содержит отрезок, концами которого служат любые две точки, принадлежащие фигуре (рисунок).
Примерами выпуклых фигур являются: круг, различные треугольники, квадрат. Точку, прямую, луч, отрезок, плоскость также считают выпуклыми фигурами.
Есть несколько разных (но эквивалентных) определений выпуклого многоугольника. Приведем наиболее известные и часто встречающиеся из них. Многоугольник называют выпуклым, если выполнено одно из следующих условий:
а) он лежит по одну сторону от любой из своих сторон (т. е. продолжения сторон многоугольника не пересекают других его сторон);
б) он является пересечением (т. е. общей частью) нескольких полуплоскостей;
в) любой отрезок с концами в точках, принадлежащих многоугольнику, целиком ему принадлежит.
2. Фигуру называют выпуклой, если любой отрезок с концами в точках фигуры целиком принадлежит ей.
Дети, например, в процессе игр или рисования знакомятся с точкой, отрезком, различными линиями, выделяя из них прямую, кривую, ломаную, учатся распознавать некоторые их свойства.
1. «Какая дорога от леса до дома короче?» (рис. 1)
2. «Поросята живут в домиках, расположенных на берегах реки. Они не умеют плавать. Кто из поросят может пойти в гости друг к другу?» (рис. 2)
Рис. 1 Рис. 2
Замкнутая линия делит плоскость на внешнюю и внутреннюю области. Дети рано усваивают, что значит «внутри» и «вне». Например, это происходит при выполнении задания на закрашивание фигуры, то есть ее внутренней области.
Геометрические фигуры, с которыми рано знакомятся дети (круг, квадрат, треугольник и др.), представляют собой замкнутые линии (границы фигур) с их внутренней областью. Границей круга является окружность. Границей многоугольников является ломаная линия, которая состоит из отрезков. В геометрии все эти понятия имеют определения.
Отрезок — часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными точками, называемых концами отрезка.
Луч (полупрямая) — это часть прямой, состоящая из всех ее точек, лежащих по одну сторону от заданной на ней точки (начала луча).
Угол – это меньшая часть плоскости, ограниченная двумя лучами, выходящими из одной точки. Эти лучи называются сторонами угла, а их общая точка – вершиной угла (рис. 59).
Круг можно определить как фигуру, состоящую из окружности и ее внутренней области.
Лекция 7. Основные свойства отрезка, угла, треугольника, четырехугольника, параллелограмма, ромба, прямоугольника, квадрата, трапеции, окружности и круга
ОТРЕЗОК
Основные свойства отрезка
Две точки прямой делят эту прямую на три части: два луча и отрезок.
Говорят, что два отрезка пересекаются, если они имеют только одну общую внутреннюю точку. Чтобы измерять отрезки (а точнее – длины отрезков), нужно ввести единицу измерения – единичный отрезок, в качестве которого можно брать отрезки длиной 1 м, 1 км, 1 мм, 1 дюйм и т. д.
Определение. Длиной отрезка называется величина, определенная для каждого отрезка таким образом, что:
j равные отрезки имеют равные длины;
k если отрезок состоит из нескольких отрезков, то его длина равна сумме длин отрезков, его составляющих.
Аксиома. Каждый отрезок имеет определенную длину больше нуля.
Два отрезка называются равными, если их можно совместить наложением (или: два отрезка называются равными, если их длины равны.). Равные отрезки имеют равные длины.
Из двух отрезков большим считается тот, длина которого больше.
Длину отрезка называют также расстоянием между его концами. Если XY = 18 см, то значит, расстояние между точками X и Y равно 18.
Основные свойства измерения отрезков.
По величине углы можно разделить на 4 класа:
Основные свойства угла
Два угла называются смежными, если у них одна сторона общая, а две другие являются дополнительными лучами.
Свойства смежных углов
Два угла называются вертикальными, если стороны однго из них являются дополнительными лучами другого.
Свойство вертикальных углов. Вертикальные углы равны.
Треугольник
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки называются вершинами, а отрезки – сторонами треугольника.
Углом DABC при вершине A называется угол, образованный лучами AB и AC.
Внешним углом при данной вершине называется угол, смежный с углом треугольника при данной вершине.
Биссектрисой треугольника нвзывается отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.
Свойства биссектрисы треугольника:
Классификация треугольников:
по углам:
по сторонам:
треугольники со сторонами различной длины (разносторонние или треугольники общего вида);
равнобедренные треугольники (в том числе равносторонние)
Основные свойства треугольника В любом треугольнике:
1. Против бόльшей стороны лежит бόльший угол, и наоборот.
2. Против равных сторон лежат равные углы, и наоборот.
В частности, все углы в равностороннем треугольнике равны.
3. Сумма углов треугольника равна 180º.
Из свойств 2–3 следует: равностороннем треугольнике каждый угол равен 60º.
4. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним: Ð BCD = Ð A + Ð B.
5. Каждая сторона треугольника меньше суммы двух других сторон и больше их разности: b – c 2 + NQ 2 + RS 2 = ¼(AB 2 +BC 2 +CD 2 +AD 2 +AC 2 +BD 2 ).
Если β – угол между первой и второй средними линиями четырёхугольника, то его площадь:
Равными плитками, которые имеют форму произвольного, не обязательно выпуклого, четырёхугольника можно замостить плоскость так, чтобы не было наложений плиток друг на друга и не осталось непокрытых участков плоскости.
Основные свойства параллелограмма,
Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны:
У параллелограмма противолежащие стороны равны и противолежащие углы равны:
Сумма любых двух соседних углов параллелограмма равна 180°:
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам:
Каждая диагональ делит параллелограмм на два равных треугольника:
Две диагонали параллелограмма делят его на четыре равновеликих треугольника:
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
e 2 +f 2 = a 2 +b 2 +a 2 +b 2 = 2(a 2 +b 2 ).
Высотой параллелограмма называется перпендикуляр, проведённый из вершины параллелограмма к неприлежащей стороне:
Площадь параллелограмма можно определить:
Основные свойства ромба, прямоугольника,
Ромбом называется параллелограмм, у которого все стороны равны:
Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов:
В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей.
Радиус окружности, вписанной в ромб, можно вычислить:
Площадь ромба можно определить:
Прямоугольником называется параллелограмм, у которого все углы прямые:
Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка:
Площадь прямоугольника можно определить:
Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали:
Основные свойства квадрата,
Квадрат – это прямоугольник, у которого все стороны равны:
Диагонали квадрата равны и перпендикулярны.
Сторона и диагональ квадрата связаны соотношениями:
У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей.
Радиус описанной окружности:
Радиус вписанной окружности:
Основные свойства трапеции,
Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны:
Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.
Средней линией (первой средней линией) трапеции называется отрезок, который соединяет середины боковых сторон данной трапеции:
Средняя линия трапеции параллельна её основаниям и равна их полусумме:
При продолжении до пересечения боковых сторон трапеции образуются два подобных треугольника с коэффициентом подобия, равным отношению основ:
Треугольники, образованные основами и отрезками диагоналей подобны с коэффициентом подобия, равным отношению основ:
Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны:
Отрезок, соединяющий середины оснований (вторая средняя линия) трапеции, проходит через точку пересечения диагоналей, а его продолжение – через точку пересечения продолжений боковых сторон:
Отрезок, соединяющий середины диагоналей (третья средняя линия) трапеции, параллелен основаниям и равен их полуразности:
В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон:
Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.
В трапецию АВСD с основаниями AD и BC можно вписать окружность тогда и только тогда, когда выполняется хотя бы одно из равенств:
Боковые стороны трапеции видны из центра окружности, вписанной в данную трапецию, под прямым углом:
Радиус вписанной в трапецию окружности можно определить:
Равнобокой называется трапеция, у которой боковые стороны равны:
У равнобокой трапеции:
Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.
Стороны и диагональ равнобокой трапеции связаны соотношением:
Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.
Площадь трапеции можно определить:
Дельтоидом называется четырёхугольник, имеющий две пары равных соседних сторон.
Дельтоид может быть выпуклым или невыпуклым.
Прямые, содержащие диагонали любого дельтоида пересекаются под прямым углом.
В любом дельтоиде углы между соседними неравными сторонами равны.
Площадь любого дельтоида можно определить:
В любой выпуклый дельтоид можно вписать окружность.
Если выпуклый дельтоид не является ромбом, то существует окружность, касающаяся продолжений всех четырёх сторон данного дельтоида.
Для невыпуклого дельтоида можно построить окружность, касающуюся двух сторон большей длины и продолжений двух меньших сторон, а также окружность, касающуюся двух меньших сторон и продолжений двух сторон большей длины.
Вокруг дельтоида можно описать окружность тогда и только тогда, когда его неравные стороны образуют углы по 90°.
Радиус окружности, описанной около дельтоида можно определить через две его неравные стороны:
Четырёхугольник называется ортодиагональным, если его диагонали пересекаются под прямым углом.
Четырёхугольник является ортодиагональным тогда и только тогда, когда выполняется одно из условий:
Сумма квадратов противолежащих сторон вписанного в окружность ортодиагонального четырёхугольника равна квадрату диаметра описанной окружности:
Ортодиагональный четырёхугольник является описанным около окружности тогда и только тогда, когда произведения его противолежащих сторон равны:
Если ABCD – ортодиагональный четырёхугольник, описанный около окружности с центром в точке О, то верны соотношения:
Основные свойства окружности
Формулы длины окружности
1. Формула длины окружности через диаметр:
2. Формула длины окружности через радиус:
Окружностью называется замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.
Отрезок R, который соединяет центр окружности с любой её точкой (а также длина этого отрезка), называется радиусом.
Отрезок DE, который соединяет какие-либо две точки окружности, называется хордой.
Хорда BC, проходящая через центр окружности, называется диаметром.
Диаметр – наибольшая хорда данной окружности. Наименьшей хорды окружности не существует.
Дуга, ∪AB,– это часть окружности, расположенная между двумя её точками.
Вписанным углом, α, называется угол, образованный двумя хордами, имеющими общий конец.
Центральным углом, β, называется угол, образованный двумя радиусами.
Параллельные хорды отсекают на окружности равные дуги:
Диаметр, проходящий через середину хорды, перпендикулярен ей:
Хорды окружности равны тогда и только тогда, когда они равноудалены от её центра:
Хорды окружности равны тогда и только тогда, когда они стягивают равные дуги:
Большая из двух хорд окружности расположена ближе к её центру:
2. Формула площади круга через диаметр:
Определение. Круг – часть плоскости, ограниченная окружностью..
Окружность разделяет плоскость на две части, внутреннюю и внешнюю. Внутренняя часть, включающая саму окружность, называется кругом.
Точка O — это центр и круга и окружности.
Диаметр разделяет круг на два полукруга, а окружность на две полуокружности.