Что называется функцией распределения случайной величины и какими свойствами она обладает
Содержание:
Законы распределения:
Распределение случайных переменных: Каждая из случайных переменных имеет ряд возможных значений, могущих возникнуть с определенной вероятностью.
Случайные переменные величины могут носить прерывный (дискретный) и непрерывный характер. Возможные значения прерывной случайной переменной отделены друг от друга конечными интервалами. Возможные значения непрерывной случайной переменной не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток.
Примерами прерывных случайных переменных могут служить:
Примеры непрерывных случайных переменных:
Если перечислить все возможные значения случайной переменной и указать вероятности этих значений, то получится распределение случайной переменной. Распределение случайной переменной указывает на соотношение между отдельными значениями случайной величины и их вероятностями.
Распределение случайной переменной будет задано законом распределения, если точно указать, какой вероятностью обладает каждое значение случайной переменной.
Такая таблица называется также рядом распределения случайной переменной.
Для наглядности ряд распределения изображают графически, откладывая на прямоугольной системе координат по оси абсцисс возможные значения случайной переменной, а по оси ординат — их вероятности. В результате графического изображения получается многоугольник или полигон распределения (график 1). Многоугольник распределения является одной из форм закона распределения.
Функция распределения
Ряд распределения является исчерпывающей характеристикой прерывной случайной перемен-
Вероятность того, что Х
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Что называется функцией распределения случайной величины и какими свойствами она обладает
(F2) cХЭЕУФЧХАФ РТЕДЕМЩ Й ; (F3) ПОБ Ч МАВПК ФПЮЛЕ ОЕРТЕТЩЧОБ УМЕЧБ:
фПЮОП ФБЛ ЦЕ ДПЛБЦЕН ПУФБМШОЩЕ УЧПКУФЧБ.
(F4) ч МАВПК ФПЮЛЕ ТБЪОЙГБ ТБЧОБ :
(F5) дМС МАВПК УМХЮБКОПК ЧЕМЙЮЙОЩ ЙНЕЕФ НЕУФП ТБЧЕОУФЧП:
йЪ УЧПКУФЧ (F4) Й (F5) РПМХЮБЕН УМЕДХАЭЕЕ УЧПКУФЧП.
рПУЛПМШЛХ ЖХОЛГЙС ТБУРТЕДЕМЕОЙС ПДОПЪОБЮОП ПРТЕДЕМСЕФ ТБУРТЕДЕМЕОЙЕ УМХЮБКОПК ЧЕМЙЮЙОЩ ( ЬФХ ЖТБЪХ УФПЙФ ЛБЛ УМЕДХЕФ ПВДХНБФШ!), НПЦОП УЮЙФБФШ ЧПЪНПЦОПУФШ РТЕДУФБЧЙФШ ЖХОЛГЙА ТБУРТЕДЕМЕОЙС ЙОФЕЗТБМПН (14) ПФ ОЕПФТЙГБФЕМШОПК ЖХОЛГЙЙ ПРТЕДЕМЕОЙЕН БВУПМАФОП ОЕРТЕТЩЧОПЗП ТБУРТЕДЕМЕОЙС.
(f3) еУМЙ УМХЮБКОБС ЧЕМЙЮЙОБ ЙНЕЕФ БВУПМАФОП ОЕРТЕТЩЧОПЕ ТБУРТЕДЕМЕОЙЕ, ФП ЕЈ ЖХОЛГЙС ТБУРТЕДЕМЕОЙС ЧУАДХ ОЕРТЕТЩЧОБ.
ьФПФ ЖБЛФ УМЕДХЕФ ЙЪ УЧПКУФЧБ 7 Й ЙЪ (F4). ъБНЕФЙН, ЮФП (f3) ЕУФШ ФБЛЦЕ УМЕДУФЧЙЕ РТЕДУФБЧМЕОЙС (14) Й ОЕРТЕТЩЧОПУФЙ ЙОФЕЗТБМБ ЛБЛ ЖХОЛГЙЙ ЧЕТИОЕЗП РТЕДЕМБ.
(f4) еУМЙ УМХЮБКОБС ЧЕМЙЮЙОБ ЙНЕЕФ БВУПМАФОП ОЕРТЕТЩЧОПЕ ТБУРТЕДЕМЕОЙЕ, ФП ЕЈ ЖХОЛГЙС ТБУРТЕДЕМЕОЙС ДЙЖЖЕТЕОГЙТХЕНБ РПЮФЙ ЧУАДХ, Й
пРЙТБСУШ ОБ УЧПКУФЧБ (f4) Й (14), НПЦОП УЖПТНХМЙТПЧБФШ ФБЛПК ЛТЙФЕТЙК БВУПМАФОПК ОЕРТЕТЩЧОПУФЙ ТБУРТЕДЕМЕОЙС: ТБУРТЕДЕМЕОЙЕ У ЖХОЛГЙЕК ТБУРТЕДЕМЕОЙС БВУПМАФОП ОЕРТЕТЩЧОП, ЕУМЙ РТЙ ЧУЕИ ЙНЕЕФ НЕУФП ТБЧЕОУФЧП:
йЪ ПРТЕДЕМЕОЙС БВУПМАФОП ОЕРТЕТЩЧОПЗП ТБУРТЕДЕМЕОЙС Й УЧПКУФЧБ 7 УТБЪХ УМЕДХЕФ УЧПКУФЧП:
(f5) еУМЙ УМХЮБКОБС ЧЕМЙЮЙОБ ЙНЕЕФ БВУПМАФОП ОЕРТЕТЩЧОПЕ ТБУРТЕДЕМЕОЙЕ, ФП ДМС МАВЩИ ЙНЕАФ НЕУФП ТБЧЕОУФЧБ:
рТЙНЕТПН ФБЛПК ЖХОЛГЙЙ ТБУРТЕДЕМЕОЙС УМХЦЙФ МЕУФОЙГБ лБОФПТБ:
Что называется функцией распределения случайной величины и какими свойствами она обладает
Каждая случайная величина полностью определяется своей функцией распределения.
Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением.
Если функция распределения F x (x) непрерывна, то случайная величина x называется непрерывной случайной величиной.
Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x), которая связана с функцией распределения F x (x) формулами
и .
Отсюда, в частности, следует, что для любой случайной величины .
При решении практических задач часто требуется найти значение x, при котором функция распределения F x (x) случайной величины x принимает заданное значение p, т.е. требуется решить уравнение F x (x) = p. Решения такого уравнения (соответствующие значения x) в теории вероятностей называются квантилями.
Квантили, наиболее часто встречающиеся в практических задачах, имеют свои названия:
— для дискретной случайной величины.
если b= , то .
Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Дискретные распределения вероятностей и их параметры
п.1. Общие свойства дискретного распределения
Согласно данному определению дискретная величина может быть определена либо на бесконечном счетном множестве, либо на конечном множестве (которое всегда счетное).
Напомним, что счетным называется множество, которое эквивалентно множеству натуральных чисел, т.е. элементы которого можно пронумеровать (см. §11 справочника для 8 класса).
Например:
1) При подбрасывании игрального кубика мы получаем всего 6 исходов. Случайная величина X – выпавшее число очков – принимает конечное число значений \(\Omega=\left\<1;2;3;4;5;6\right\>\), т.е. является дискретной конечной случайной величиной.
2) Случайная величина X – количество поступивших вызовов на сервер за сутки – не ограничена сверху и может принимать значения \(\Omega=\left\<1;2;3;. \right\>\)
Случайная величина полностью описывается своим законом распределения.
Закон распределения может быть задан аналитически (формулой), таблично или графически.
Например:
В результате измерения температуры учеников школы получен следующий ряд распределения:
t, °C | 36,3 | 36,4 | 36,5 | 36,6 | 36,7 | 36,8 | 36,9 | 37,0 | 37,1 |
p(t) | 0,05 | 0,07 | 0,15 | 0,33 | 0,31 | 0,11 | 0,04 | 0,01 | 0,01 |
Чтобы вспомнить о несовместных событиях и полной группе событий – см. §39 справочника для 9 класса.
п.2. Функция распределения дискретной случайной величины
Для дискретной случайной величины функция распределения будет ступенчатой кусочно-непрерывной функцией, область значений которой: \(F(x)\in[0;1]\).
Слева на графике функции распределения будет нулевая «ступенька», а справа – единичная «ступенька».
Например:
Найдем из закона распределения случайной величины k, полученного в предыдущем примере для урны с шарами, функцию распределения.
k | 0 | 1 | 2 | 3 |
\(P_3(k)\) | \(\frac<27><125>\) | \(\frac<54><125>\) | \(\frac<36><125>\) | \(\frac<8><125>\) |
\(F(k)\) | \(\frac<27><125>\) | \(\frac<27+54><125>=\frac<81><125>\) | \(\frac<81+36><125>=\frac<117><125>\) | \(\frac<117+8><125>=1\) |
Изобразим графически закон распределения в виде гистограммы:
Построим график для функции распределения: \begin
п.3. Числовые характеристики дискретного распределения
Числовыми характеристиками дискретного распределения являются математическое ожидание, дисперсия и среднее квадратичное отклонение (СКО).
Подробно о свойствах этих характеристик – см. §41 справочника для 9 класса.
Здесь мы приведем только основные определения.
Например:
Рассчитаем числовые характеристики для урны с шарами из предыдущего примера.
Составим расчетную таблицу:
\(x_i\) | 0 | 1 | 2 | 3 | ∑ |
\(p_i\) | \(\frac<27><125>\) | \(\frac<54><125>\) | \(\frac<36><125>\) | \(\frac<8><125>\) | \(1\) |
\(x_i p_i\) | \(0\) | \(\frac<54><125>\) | \(\frac<72><125>\) | \(\frac<24><125>\) | \(1,2\) |
\(x_i^2\) | 0 | 1 | 4 | 9 | — |
\(x_i^2 p_i\) | \(0\) | \(\frac<54><125>\) | \(\frac<144><125>\) | \(\frac<72><125>\) | \(2,16\) |
п.4. Таблица дискретных распределений и их параметров
Название | Принятое обозначение | Плотность распределения | Мат. ожидание | Дисперсия |
Дискретное равномерное | \(U(N)\) | \begin \(\frac | \(\frac | |
Бернулли | \(B(1,p)\) | \begin \(p\) | \(pq\) | |
Биномиальное | \(B(n,p)\) | \begin \(np\) | \(npq\) | |
Пуассона | \(Pois(\lambda)\) | \begin \(\lambda\) | \(\lambda\) | |
Геометрическое | \(Geopm(p)\) | \begin \(\frac1p\) | \(\frac |
|
Гипер-геометрическое | \(HG(D,N,n)\) | \begin \(\frac | $$\frac<\frac | |
п.5. Примеры
Пример 1. Выведите формулы для мат.ожидания и дисперсии дискретного равномерного распределения
Пример 2. Выведите формулы для мат.ожидания и дисперсии распределения Бернулли.
Рассмотрим другой пример – бросание фальшивой монеты, для которой вероятность выпадения орла (k=1) равна p=0,7. Тогда \(M(k)=p=0,7\), дисперсия \(D(k)=0,7\cdot 0,3=0,21\). Как и ожидалось, для фальшивой монеты средняя величина возрастает (70% бросков заканчивается выпадением орла). При этом дисперсия уменьшается.
Пример 3. Выведите формулы для мат.ожидания и дисперсии биномиального распределения.
Математическое ожидание и дисперсию для одного опыта Бернулли мы получили в примере 2: \(M(X)=p,\ D(X)=pq\).
Пример 4. Выведите формулы для мат.ожидания и дисперсии распределения Пуассона.
Что называется функцией распределения случайной величины и какими свойствами она обладает
1. Формирование представление о случайной величине, дискретных и непрерывных случайных величинах.
2. Знакомство с законом распределения дискретной случайной величины, функцией распределения и плотностью распределения непрерывной случайной величины, числовых характеристиках случайных величин.
1. Виды случайных величин.
2. Закон распределения дискретной случайной величины.
3. Функция распределения вероятностей случайной величины.
4. Плотность распределения вероятностей непрерывной случайной величины.
5. Математическое ожидание.
6. Дисперсия и среднеквадратическое отклонение.
1. Виды случайных величин.
Случайной величиной называется такая величина, которая случайно принимает какое-то значение из множества возможных значений.
По множеству возможных значений различают дискретные и непрерывные случайные величины.
Дискретными называются случайные величины, значениями которых являются только отдельные точки числовой оси. (Число их может быть как конечно, так и бесконечно).
Пример: Число родившихся девочек среди ста новорожденных за последний месяц- это дискретная случайная величина, которая может принимать значения 1,2,3,…
Непрерывными называются случайные величины, которые могут принимать все значения из некоторого числового промежутка.
2. Закон распределения дискретной случайной величины.
Закон распределения дискретной случайной величины— это соответствие между возможными значениями случайной величины и их вероятностями.
Закон распределения можно задать таблично, аналитически, графически.
При задании закона распределения таблично, в первую строку таблицы вносятся возможные значения случайно величины, а во вторую- их вероятности.
Пример: Монету подбросили 3 раза. Запишите закон распределения числа выпадения «герба».
Возможные значения данной случайной величины: 0, 1, 2, 3.
Найдем вероятность того, что «герб» не появится (0 раз).
Найдем вероятность того, что «герб» появится 1 раз.
Найдем вероятность того, что «герб» появится 2 раза.
Найдем вероятность того, что «герб» появится 3 раза.
Тогда закон распределения данной дискретной случайной величины можно представить таблицей:
Для наглядности закон распределения дискретной случайной величины можно изобразить графически, для чего в прямоугольной системе координат строят точки с координатами (xi ; pi), а затем соединяют их отрезками прямых. Полученная фигура называется многоугольником распределения.
Однако, такой способ задания (перечисление всех возможных значений случайной величины и их вероятностей) не подходит для непрерывных случайных величин. Составить перечень их возможных значений невозможно.
3. Функция распределения вероятностей случайной величины.
Дадим новый способ задания любых типов случайных величин. С этой целью введем функцию распределения вероятностей случайной величины.
Функцией распределения случайной величины называют функцию F ( x ), определяющую вероятность того, что случайная величина Х в результате испытания примет значение меньшее х, т.е. F ( x ) P ( X x ).
Геометрически это равенство можно истолковать так: F ( x ) –есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.
Иногда вместо термина «функция распределения» используется термин «интегральная функция».
Свойства функции распределения:
Следствие 1: Вероятность того, что случайная величина примет значение, заключенное в интервале (а; b ), равна приращению функции распределения на этом интервале:
Пример: Случайная величина Х задана функцией распределения:
Найдите вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0; 2).
Следствие: Если возможные значения непрерывной случайной величины распределены на всей числовой оси, то справедливы следующие предельные соотношения:
Рассмотренные выше свойства позволяют представить, как выглядит график функции распределения непрерывной случайной величины.
График расположен в полосе, ограниченной прямыми у=0, у=1 (1 свойство).
4. При возрастании значения х в интервале ( a ; b ), в котором заключены все возможные значения случайной величины, график растет вверх (2 свойство).
5. При ординаты графика равны 0, при ординаты графика равны 1 (3 свойство).
Замечание: График функции распределения дискретной случайной величины имеет ступенчатый вид.
Пример: Дискретная случайная величина Х задана таблицей распределения:
Найдите функцию распределения и постройте ее график.
Итак, функция распределения имеет следующий вид:
4. Плотность распределения вероятностей непрерывной случайной величины.
Непрерывную случайную величину можно также задать, используя другую функцию, которую называют плотностью распределения или плотностью вероятности (дифференциальной функцией).
Плотность распределения вероятностей непрерывной случайной величины Х называют функцию f ( x )- первую производную от функции распределения F ( x ).
Пример: Задана плотность вероятностей случайной величины Х.
Найдите вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5; 1).
Свойства плотности распределения вероятностей:
Свойство 1: Плотность распределения- неотрицательная функция: f ( x ) > 0.
Часто, для того чтобы характеризовать случайную величину используют числа, которые описывают случайную величину суммарно. Такие числа называются числовыми характеристиками случайной величины. К числу важнейших числовых характеристик относятся математическое ожидание и дисперсия.
5. Математическое ожидание.
Математическое ожидание приближенно равно среднему значению случайной величины. Например, если известно, что математическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в среднем выбивает больше очков, чем второй, и следовательно стреляет лучше.
Пример: Найдите математическое ожидание, зная закон распределения дискретной случайной величины.