Что называется электронным типом проводимости

Что называется электронным типом проводимости

Проводник – тело, проводящее электрический ток. Различают проводники первого и второго рода. Что называется электронным типом проводимости
К первому роду относят: все металлы и их сплавы.
Ко второму роду относят: водные растворы кислот, солей и щелочей.
Чем выше температура тела, тем меньше оно проводит электрический ток, и, наоборот, со снижением температуры проводимость увеличивается.
Металлы с высокой проводимостью используют для кабелей, проводов, обмоток трансформаторов. Металлы и сплавы с низкой проводимостью применяются в лампах накаливания, электронагревательных приборах, реостатах.
Основной параметр, характеризующий проводник – это электрическое сопротивление. Оно выражается отношением падения напряжения в проводнике к току, протекающему по нему, и зависит от температуры окружающей среды.

Применение проводников:
Проводники используют для заземления электроустановок. В качестве заземляющих проводников и заземлителей используют металлические конструкции сооружений и зданий, соблюдая при этом непрерывность и проводимость цепи. Для заземляющих проводников используют обычно сталь. Если необходимы гибкие перемычки и в других случаях, применяют медь.
Проводники также могут использоваться для выравнивания потенциалов.
Проводники используют в громоотводе, отводя молнию в землю, чтобы она не нанесла никаких повреждений.
Существуют проводники с высоким удельным сопротивлением, которые стойкие к окислению. Такие материалы применяют в электронагревательных приборах, они обладают высокой пластичностью и могут вытягиваться в тонкую проволоку и выкатываться в фольгу. Одним из таких проводником является алюминий.

Механизм проводимости:
Кристаллы имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких t°C у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик (вещества, которые плохо проводят или совсем не проводят электрический ток).
Свойства диэлектриков:

Занимают по проводимости промежуточное
положение между проводниками и диэлектриками

Кремний – 4 валентный химический элемент. Каждый атом имеет
во внешнем электронном слое по 4 электрона, которые используются
для образования парноэлектронных (ковалентных) связей с 4 соседними атомами.

свободный электрон
Под воздействием электрического поля электроны и дырки
начинают упорядоченное (встречное) движение, образуя электрический ток.

Что называется электронным типом проводимости

При легировании 4 – валентного кремния Si 5 – валентным мышьяком As,
один из 5 электронов мышьяка становится свободным
Таким образом изменяя концентрацию мышьяка, можно в широких
пределах изменять проводимость кремния.

Изменяя концентрацию индия, можно в широких пределах
изменять проводимость кремния, создавая полупроводник с
заданными электрическими свойствами.

Помимо основных носителей в полупроводнике существует очень малое число неосновных носителей заряда, количество которых растет при увеличении t°C.

Основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Полупроводниковый диод – это p – n переход, заключенный в корпус.

Транзистор – это полупроводниковый прибор, в котором полупроводниковые
пластинки соприкасаются таким образом, что возникает два p-n перехода.

В 1956 г. Ш., Бардин и Браттейн были удостоены
Нобелевской премии по физике «за исследования
полупроводников и открытие транзисторного эффекта».

Источник

Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках.

23 Май 2013г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник. Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Что называется электронным типом проводимости

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается.

Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом.

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны.

Что называется электронным типом проводимости

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной.

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному, заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

Что называется электронным типом проводимости

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов. Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным», а там где он находился до этого, образуется пустое место, которое условно называют дыркой.

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике.

Что называется электронным типом проводимости

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений, в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки, которые будут заполняться другими освободившимися электронами. То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток.

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку. Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки, находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле, этот процесс непрерывен: нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному.

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной.

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным. И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p-типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p-типа основными носителями заряда являются дырки, а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в следующей части рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник

Полупроводники. Собственная проводимость полупроводников.

К полупроводникам относят широкий класс веществ, которые отлича­ются от металлов тем, что:

а) концентрация подвижных носителей заряда в них существенно ниже, чем концентрация атомов;

б) эта концентрация (а с ней и электропроводность) может меняться под влиянием температуры, освещения, небольшого количества примесей;

в) электрическое сопротивление уменьшается с ростом температуры.

Что называется электронным типом проводимости

Полупроводники по своему строению делятся на кристаллические, амфорные и стеклообразные, жидкие. По химическому составу полупроводники делятся на элементарные, т. е. состоящие из атомов одного сорта (Ge, Si, Se, Тe), двойные, тройные, четверные соединения. Полупроводни­ковые соединения принято классифицировать по номерам групп периодической таблицы элемен­тов, к которым принадлежат входящие в соединение элементы. Например, GaAs и InSb относятся к соединениям типа A III B V (существуют также и органические полупроводники).

Строение полупроводников.

Строение полупроводников рассмотрим на примере кремния.

Что называется электронным типом проводимости

В кристаллической решетке кремния (Si) каждый атом имеет четыре ближайших соседа. Кремний является четырехвалентным элементом, и взаимодействие пары соседних атомов осуществля­ется с помощью ковалентной, или парноэлектронной, связи, когда в каждой связи участвует по одному электрону от каждого атома. Это так называемые коллективизированные электроны; большую часть времени они проводят в пространстве между соседними ионами кремния, удер­живая их друг возле друга. Каждый валентный электрон может двигаться по связи вдоль всего кристалла (от одного атома к другому).

При низких температурах парноэлектронные связи достаточно прочны, они не разрывают­ся, поэтому кремний не проводит электрический ток.

Электронная проводимость.

Что называется электронным типом проводимости

Дырочная проводимость.

Разрыв валентных связей при увеличении температуры приводит к образованию вакантного места с недостающим электроном, которое имеет эффективный положительный заряд и называется дыркой. Становится возможным переход валентных электронов из соседних связей на ос­вободившееся место. Такое движение отрицательного заряда (электрона) в одном направлении эквивалентно движению положительного заряда (дырки) в противоположном.

Перемещение дырок по кристаллу происходит хаотически, но если к нему приложить раз­ность потенциалов, начнется их направленное движение вдоль электрического поля. Проводи­мость кристалла, обусловленная дырками, называется дырочной проводимостью.

Электронная и дырочная проводимость чистых (беспримесных) полупроводников называется собственной проводимостью полупроводников.

Собственная проводимость полупроводников невелика. Так, в Ge число носителей заряда (электронов) составляет всего одну десятимиллиардную часть от общего числа атомов.

Источник

Проводимость полупроводников


Виды проводимости

В современной электронике практическое применение имеют следующие полупроводники: германий, кремний, селен, окись меди и др. Вокруг ядра атома германия, содержащего 32 протона, на четырех оболочках находятся 32 электрона; расположенные на наружной оболочке 4 валентных электрона и определяют электропроводность германия.

Рис. 69. Кристаллическая решетка чистого германия.

Вследствие теплового возбуждения происходит ионизация отдельных атомов кристаллической решетки, т. е. некоторые из валентных электронов становятся свободными, обусловливая электронную проводимость германия. В результате столкновений с ионами и атомами часть свободных электронов теряет энергию. Они возвращаются в валентную зону и занимают свое место в парноэлектронных связях. Одновременно с этим появляются новые свободные электроны. Наконец, устанавливается динамическое равновесие между освобождающимися электронами и возвращающимися в валентную зону.

Это направленное движение дырок от одного атома к другому соответствует движению положительных зарядов через полупроводник, а следовательно, и протеканию через полупроводник тока в направлении движения дырок.

Токи, вызванные электронной и дырочной проводимостями, совпадают по направлению и поэтому

где I n — электронный ток; I p — дырочный ток.

Таким образом, проводимость полупроводника определяется как движением электронов в зоне проводимости, так и движением электронов в валентной зоне, однако принято считать, что в валентной зоне перемещаются не электроны, а дырки.

Влияние примесей на проводимость полупроводника

Чистые полупроводники редко применяются в полупроводниковой технике. Обычно используются примесные полупроводники. Введение в полупроводник атомов соответствующей примеси способствует образованию дополнительных носителей тока, что приводит к повышению электропроводности иногда в десятки миллионов раз. В чистом полупроводнике «поставщиком» электронов в зону проводимости может быть валентная зона. Введение примесей в полупроводник должно способствовать переходу электронов в зону проводимости.

Примесные уровни второго вида называются акцепторными, а сами примеси — акцепторами. Акцепторные уровни располагаются около валентной зоны. При абсолютном нуле температуры акцепторные уровни свободны, т. е. не заполнены. Поэтому при температуре, отличной от абсолютного нуля, на такие уровни могут перейти электроны из валентной зоны, и так как ∆Е 2 рис. 70, б ). Уход электронов из валентной зоны дает возможность оставшимся здесь электронам, при наличии постороннего электрического поля, принять участие в проводимости в пределах этой зоны. При этом, как указывалось выше, дырки будут двигаться в направлении действия электрического поля.

Что называется электронным типом проводимости

Таким образом, электропроводность полупроводника можно увеличить путем введения донорной примеси (за счет возрастания электронов в зоне проводимости) либо путем введения акцепторной примеси (за счет возрастания числа дырок в валентной зоне).

Рис. 70. Виды примесей в полупроводнике: а — расположение донорных уровней; б — расположение акцепторных уровней.

Свойства германия с примесями

В настоящее время из полупроводниковых элементов наибольшее применение нашли германий и кремний. Германий является очень редким элементом: содержание его в земной коре составляет менее 7·10-4%. Исходным продуктом для получения чистого германия является двуокись германия (GеO 2 ), восстанавливаемая в водороде.
Кремний, наоборот, — один из самых распространенных элементов в природе и запасы его неисчерпаемы. Однако получение чистого кремния затруднено из-за высокой температуры плавления (более 1400° С) и большой химической активности в жидком состоянии.

Что называется электронным типом проводимости

Если в четырехвалентный германий добавить пятивалентный мышьяк или фосфор (донорную примесь), то примесные атомы займут в кристаллической решетке места отдельных атомов германия. При этом около каждого атома примеси остается один валентный электрон, не связанный с окружающими атомами германия ( рис. 71 ).

Рис. 71. Кристаллическая решетка германия с примесью фосфора.

При температуре, отличающейся от абсолютного нуля, этот электрон может покинуть атом примеси и стать свободным, причем возникновение свободных электронов не связано с появлением дырки. Для ионизации атома чистого германия необходима энергия 0,72 эв, тогда как для ионизации примесного атома требуется энергия 0,015 эв. Поэтому уже при комнатной температуре все свободные электроны донорной примеси находятся в зоне проводимости. Германий с донорной примесью называется германием n-типа. Если к нему приложить электрическое поле, то в полупроводнике появится ток.

При добавлении в четырехвалентный германий трехвалентного индия или галлия атом примеси, заняв место атома германия в кристаллической решетке, не будет иметь достаточного числа электронов для образования ковалентной связи ( рис. 72 ). При температуре выше абсолютного нуля один из валентных электронов соседних атомов, получив достаточную энергию, заполнит недостающую связь. Примесный атом становится отрицательным ионом, а в том месте, откуда ушел электрон, образуется дырка. При этом свободный электрон не появляется, количество свободных электронов в зоне проводимости остается прежним. Для того чтобы электрон от атома германия перешел к атому примеси, ему надо сообщить энергию порядка 0,1 эв, в то время как для того, чтобы электрону от примесного атома перейти в зону проводимости, надо затратить энергию в 0,72 эв. При обычной комнатной температуре большинство электронов германия переходит к примесным атомам. Германий с акцепторной примесью называется германием р-типа.

В германии n-типа много свободных электронов, они рекомбинируют с дырками и уменьшают их количество; аналогично в германии р-типа много дырок, они рекомбинируют с электронами и уменьшают их количество.

Что называется электронным типом проводимости

При значительной концентрации примеси проводимость полупроводника определяется основными примесными носителями. Так, в германии n-типа основными носителями являются электроны, неосновными — дырки, а в германии р-типа основными носителями являются дырки, а неосновными — электроны.

Примесные полупроводники электрически нейтральны и обладают проводимостью, определяемой видом примеси.

Рис. 72. Кристаллическая решетка четырехвалентного германия с примесью трехвалентного индия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что называется электронным типом проводимости