Что называется электронной проводимостью
ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ
электрическая проводимость в-ва за счёт движения в нём электронов проводимости (свободных электронов, слабо связанных с ионами). Под действием внеш. электрич. поля электроны проводимости могут упорядочение перемещаться на макроскопич. расстояния. Э. п. обладают металлы, металлич. сплавы и ПП. В зонной теории твёрдых тел различают (в зависимости от заполнения энергетич. зоны электронами) просто Э. п. (л-типа) и аномальную Э. п., наз. дырочной проводимостью (р-типа).
Смотреть что такое «ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ» в других словарях:
ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ — проводимость га типа, электропроводность полупроводника, в к ром осн. носители тока эл ны проводимости. Э. п. осуществляется в ПП, когда концентрация доноров превышает концентрацию акцепторов. Физический энциклопедический словарь. М.: Советская… … Физическая энциклопедия
электронная проводимость — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electronic admittance … Справочник технического переводчика
электронная проводимость — elektroninis laidumas statusas T sritis automatika atitikmenys: angl. electron conduction; n type conduction vok. Elektronenleitung, f; N Leitung, f rus. проводимость n типа, f; электронная проводимость, f pranc. conduction par électrons, f;… … Automatikos terminų žodynas
электронная проводимость — elektroninis laidumas statusas T sritis chemija apibrėžtis Medžiagos elektrinis laidumas, kurį sukelia elektronai, patekę į laidumo zoną. atitikmenys: angl. electron conductivity; electronic conductivity; n type conductivity rus. проводимость n… … Chemijos terminų aiškinamasis žodynas
электронная проводимость — elektroninis laidumas statusas T sritis fizika atitikmenys: angl. electron conduction; electronic conduction; n type conduction vok. Elektronenleitfähigkeit, f; Elektronenleitung, f; n Type Leitfähigkeit, f rus. проводимость n типа, f;… … Fizikos terminų žodynas
электронная проводимость — elektroninis laidumas statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos elektrinis laidumas, kurį lemia laisvieji elektronai. atitikmenys: angl. electronic conduction; n type conduction vok. Elektronenleitung, f; n Leitung, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
электронная проводимость — elektroninis laidis statusas T sritis automatika atitikmenys: angl. electron conductance vok. Elektronenleitung, f rus. электронная проводимость, f pranc. conduction électronique, f … Automatikos terminų žodynas
электронная проводимость — см. в ст. Электронно дырочный переход. Энциклопедия «Техника». М.: Росмэн. 2006 … Энциклопедия техники
удельная электронная проводимость — savitasis elektroninis laidis statusas T sritis fizika atitikmenys: angl. electronic conductivity vok. Elektronenleitfähigkeit, f rus. удельная электронная проводимость, f pranc. conductivité électronique, f … Fizikos terminų žodynas
электронная электропроводность полупроводника — электронная электропроводность Ндп. электронная проводимость Электропроводность полупроводника, обусловленная в основном перемещением электронов проводимости. [ГОСТ 22622 77] Недопустимые, нерекомендуемые электронная проводимость Тематики… … Справочник технического переводчика
ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ
Смотреть что такое «ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ» в других словарях:
электронная проводимость — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electronic admittance … Справочник технического переводчика
электронная проводимость — elektroninis laidumas statusas T sritis automatika atitikmenys: angl. electron conduction; n type conduction vok. Elektronenleitung, f; N Leitung, f rus. проводимость n типа, f; электронная проводимость, f pranc. conduction par électrons, f;… … Automatikos terminų žodynas
электронная проводимость — elektroninis laidumas statusas T sritis chemija apibrėžtis Medžiagos elektrinis laidumas, kurį sukelia elektronai, patekę į laidumo zoną. atitikmenys: angl. electron conductivity; electronic conductivity; n type conductivity rus. проводимость n… … Chemijos terminų aiškinamasis žodynas
электронная проводимость — elektroninis laidumas statusas T sritis fizika atitikmenys: angl. electron conduction; electronic conduction; n type conduction vok. Elektronenleitfähigkeit, f; Elektronenleitung, f; n Type Leitfähigkeit, f rus. проводимость n типа, f;… … Fizikos terminų žodynas
электронная проводимость — elektroninis laidumas statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos elektrinis laidumas, kurį lemia laisvieji elektronai. atitikmenys: angl. electronic conduction; n type conduction vok. Elektronenleitung, f; n Leitung, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
электронная проводимость — elektroninis laidis statusas T sritis automatika atitikmenys: angl. electron conductance vok. Elektronenleitung, f rus. электронная проводимость, f pranc. conduction électronique, f … Automatikos terminų žodynas
ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ — электрическая проводимость в ва за счёт движения в нём электронов проводимости (свободных электронов, слабо связанных с ионами). Под действием внеш. электрич. поля электроны проводимости могут упорядочение перемещаться на макроскопич. расстояния … Большой энциклопедический политехнический словарь
электронная проводимость — см. в ст. Электронно дырочный переход. Энциклопедия «Техника». М.: Росмэн. 2006 … Энциклопедия техники
удельная электронная проводимость — savitasis elektroninis laidis statusas T sritis fizika atitikmenys: angl. electronic conductivity vok. Elektronenleitfähigkeit, f rus. удельная электронная проводимость, f pranc. conductivité électronique, f … Fizikos terminų žodynas
электронная электропроводность полупроводника — электронная электропроводность Ндп. электронная проводимость Электропроводность полупроводника, обусловленная в основном перемещением электронов проводимости. [ГОСТ 22622 77] Недопустимые, нерекомендуемые электронная проводимость Тематики… … Справочник технического переводчика
Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках.
23 Май 2013г | Раздел: Радио для дома
Здравствуйте уважаемые читатели сайта sesaga.ru. На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).
Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник. Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.
Общие понятия.
Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.
Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).
По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.
Свойства полупроводников.
Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается.
Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.
Строение атомов полупроводников.
Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона.
Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом.
В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.
Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны.
Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной.
В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному, заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.
Электропроводность полупроводника.
Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.
При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов. Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным», а там где он находился до этого, образуется пустое место, которое условно называют дыркой.
Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.
А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике.
Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений, в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки, которые будут заполняться другими освободившимися электронами. То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток.
Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку. Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.
Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки, находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.
Пока в полупроводнике действует электрическое поле, этот процесс непрерывен: нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).
Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному.
Электронно-дырочная проводимость.
В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной.
Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.
Электронная проводимость.
Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным. И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.
Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.
Дырочная проводимость.
Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.
Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.
Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p-типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p-типа основными носителями заряда являются дырки, а не основными — электроны.
Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.
На этом давайте остановимся, а в следующей части рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!
Электрическая проводимость
Классическая электродинамика | ||||||||||||
Электричество · Магнетизм | ||||||||||||
| ||||||||||||
См. также: Портал:Физика |
Содержание
Удельная проводимость
Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:
В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.
Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:
векторы же плотности тока и напряжённости поля в этом случае, вообще говоря, не коллинеарны.
Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) ортогональную систему координат (собственные оси тензора проводимости), в которой тензор проводимости диагонализуется. В таких координатах соотношение упрощается и записывается так:
(но такое соотношение для анизотропной среды реализуется только в одних выделенных координатах) [2]
Величина, обратная удельной проводимости, называется удельным сопротивлением.
Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:
Связь с коэффициентом теплопроводности
Закон Видемана — Франца устанавливает однозначную связь удельной электрической проводимости с коэффициентом теплопроводности :
Электропроводность металлов
Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускался постоянный электрический ток. После этого исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока. Эти опыты показали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос о природе носителей заряда в металлах.
Опыты Толмена и Стюарта
Прямым доказательством, что электрический ток в металлах обуславливается движением электронов, были опыты Толмена и Стюарта, проведённые в 1916 г. Идея этих опытов была высказана Мандельштамом и Папалекси в 1913 г.
Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.
При достаточно плотной намотке и тонких проводах можно считать, что линейное ускорение катушки при торможении направлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции — направленная противоположно ускорению ( — масса электрона). Под её действием электрон ведёт себя в металле так, как если бы на него действовало некоторое эффективное электрическое поле:
Поэтому эффективная электродвижущая сила в катушке, обусловленная инерцией свободных электронов, равна
где L — длина провода на катушке. [4]
Введём обозначения: I — сила тока, протекающего по замкнутой цепи, R — сопротивление всей цепи, включая сопротивление проводов катушки и проводов внешней цепи и гальванометра. Запишем закон Ома в виде:
Тогда за время торможения через гальванометр пройдёт заряд
Удельная проводимость некоторых веществ
Удельная проводимость приведена при температуре 20 °C [5] :