Что называется электрической мощностью
Что такое электрическая мощность
Современный человек постоянно сталкивается в быту и на производстве с электричеством, пользуется приборами, потребляющими электрический ток и устройствами, вырабатывающими его. При работе с ними всегда надо учитывать их возможности, заложенные в технических характеристиках.
Транспортировка или передача больших электрических мощностей в промышленных целях выполняется по высоковольтным линиям электропередач.
Преобразование электрической энергии осуществляется на трансформаторных подстанциях.
Потребление электричества происходит в бытовых и промышленных устройствах различного назначения. Одним из распространенных их видов являются лампы накаливания различных номиналов.
Определение мгновенной электрической мощности
В теоретической электротехнике для вывода основных соотношений между током, напряжением и мощностью используются их представления в виде мгновенных величин, которые фиксируются в какой-то определенный временной момент.
Если за очень короткий промежуток времени ∆t единичный элементарный заряд q под действием напряжения U перемещается из точки «1» в точку «2», то он совершает работу, равную разности потенциалов между этими точками. Разделив ее на промежуток времени ∆t, получим выражение мгновенной мощности для единичного заряда Pe(1-2).
Поскольку под действием приложенного напряжения перемещается не только единичный заряд, а все соседние, оказавшиеся под влиянием этой силы, количество которых удобно представить числом Q, то для них можно записать мгновенную величину мощности PQ(1-2).
Выполнив простые преобразования получим выражение мощности Р и зависимость ее мгновенного значения p(t) от составляющих произведения мгновенного тока i(t) и напряжения u(t).
Определение электрической мощности постоянного тока
В цепях постоянного тока величина падения напряжения на участке цепи и протекающего по нему тока не изменяется и остается стабильной, равной мгновенным значениям. Поэтому определить мощность в этой схеме можно перемножением этих величин или делением совершенной работы А на период времени ее выполнения, как показано на поясняющей картинке.
Определение электрической мощности переменного тока
Законы синусоидального изменения токов и напряжений, передаваемых по электрическим сетям, накладывают свое влияние на выражение мощности в таких цепях. Здесь действует полная мощность, которая описывается треугольником мощностей и состоит из активной и реактивной составляющих.
Электрический ток синусоидальный формы при прохождении по линиям электропередач со смешанными видами нагрузок на всех участках не изменяет форму своей гармоники. А падение напряжения на реактивных нагрузках сдвигается по фазе в определенную сторону. Понять влияние приложенных нагрузок на изменение мощности в цепи и ее направление помогают выражения мгновенных величин.
При этом сразу обратите внимание на то, что направление прохождения тока от генератора к потребителю и передаваемой мощности по созданной цепи — это совершенно разные вещи, которые в отдельных случаях могут не только не совпадать, но и направлены в противоположные стороны.
Рассмотрим эти взаимосвязи при их идеальном, чистом проявлении для разных видов нагрузок:
Выделение мощности на активной нагрузке
Будем считать, что генератор вырабатывает идеальную синусоиду напряжения u, которая прикладывается к чисто активному сопротивлению цепи. Амперметр А и вольтметр V замеряют ток I и напряжение U в каждый момент времени t.
На графике видно, что синусоиды тока и падения напряжения на активном сопротивлении совпадают по частоте и фазе, совершая одинаковые колебания. Мощность же, выражаемая их произведением, колеблется с удвоенной частотой и всегда остается положительной.
p=u∙i=Um∙sinωt∙Um/R∙sinωt=Um 2 /R∙sin 2 ωt=Um 2 /2R∙(1-cos2ωt).
Если перейти к выражению действующего напряжения, то получим: p=P∙(1-cos2ωt).
Далее проинтегрируем мощность за период одного колебания Т и сможем заметить, что приращение энергии ∆W за этот промежуток увеличивается. С дальнейшим течением времени активное сопротивление продолжает потреблять новые порции электроэнергии, как показано на графике.
На реактивных нагрузках характеристики потребляемой мощности отличаются, имеют другой вид.
Выделение мощности на емкостной нагрузке
В схеме питания генератора заменим резистивный элемент конденсатором с емкостью С.
Соотношения между током и падением напряжения на емкости выражаются зависимостью: I=C∙dU/dt=ω∙C ∙Um∙cosωt.
Перемножим значения мгновенных выражений тока с напряжением и получим значение мощности, которая потребляется емкостной нагрузкой.
p=u∙i=Um∙sinωt∙ωC ∙Um∙cosωt=ω∙C ∙Um 2 ∙sinωt∙cosωt=Um 2 /(2Xc)∙sin2ωt=U 2 /(2Xc)∙sin2ωt.
Здесь видно, что мощность совершает колебания относительно нуля с удвоенной частотой приложенного напряжения. Суммарное ее значение за период гармоники, как и приращение энергии, равно нулю.
Это означает, что энергия перемещается по замкнутому контуру цепи в обе стороны, но никакой работы не совершает. Подобный факт объясняется тем, что при нарастании напряжения источника по абсолютной величине мощность положительна, а поток энергии по цепи направляется в емкость, где происходит накопление энергии.
После того как напряжение переходит на падающий участок гармоники, из емкости начинается возврат энергии в контур к источнику. В обоих этих процессах полезная работа не совершается.
Выделение мощности на индуктивной нагрузке
Теперь в схеме питания заменим конденсатор индуктивностью L.
Здесь ток через индуктивность выражается соотношением:
p=u∙i=Um∙sinωt∙ωC ∙(-Um/ωL∙cosωt)=-Um 2 /ωL∙sinωt∙cosωt=-Um 2 /(2XL)∙sin2ωt=-U 2 /(2XL)∙sin2ωt.
Полученные выражения позволяют увидеть характер изменения направления мощности и приращения энергии на индуктивности, которые совершают такие же бесполезные для выполнения работы колебания, как и на емкости.
Выделяемую на реактивных нагрузках мощность называют реактивной составляющей. Она в идеальных условиях, когда у соединительных проводов нет активного сопротивления, кажется безобидной и не создает никакого вреда. Но в условиях реального электроснабжения периодические прохождения и колебания реактивной мощности вызывают нагрев всех активных элементов, включая соединительные провода, на который затрачивается определенная энергия и снижается величина приложенной полной мощности источника.
Основное отличие реактивной составляющей мощности состоит в том, что она вообще не совершает полезной работы, а ведет к потерям электрической энергии и превышению нагрузок оборудования, особенно опасных в критических ситуациях.
По этим причинам для устранения влияния реактивной мощности используются специальные технические системы ее компенсации.
Выделение мощности на смешанной нагрузке
В качестве примера используем нагрузку на генератор с активно емкостной характеристикой.
На приведенном графике не показаны для упрощения картины синусоиды токов и напряжений, но следует учесть, что при активно-емкостном характере нагрузки вектор тока опережает напряжение.
После преобразований получим: p=P∙(1- cos 2ωt)+Q ∙sin2ωt.
Эти два слагаемые в последнем выражении являются активной и реактивной составляющими мгновенной полной мощности. Только первая из них совершает полезную работу.
Приборы измерения мощности
Для анализа потребления электроэнергии и расчета за нее используются приборы учета, которые давно получили название «счетчики». Их работа основана на измерении действующих величин тока и напряжения и автоматическом перемножении их с выводом информации.
Счетчики отображают потребляемую мощность с учетом времени работы электроприборов по нарастающему принципу от момента включения электросчетчика под нагрузку.
Для замера в цепях переменного тока активной составляющей мощности используются ваттметры, а реактивной — варметры. Они имеют разные обозначения единиц измерения:
Чтобы определить полную мощность потребления, необходимо по формуле треугольника мощностей вычислить ее величину на основе показаний ваттметра и варметра. Она выражается в своих единицах — вольт-амперах.
Принятые обозначения единиц каждой помогают электрикам судить не только о ее величине, но и о характере составляющей мощности.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Измерение электрической мощности
Электрическая мощность любого прибора — важный показатель, который позволяет определить возможность его работы в сетях абонента. Этот показатель применяется для расчета электрических схем и режима работы электроустановки, для обеспечения надежной работы электросетей. Чем мощность приемников будет большей, тем быстрее они выполнят нужную работу.
Что называется мощностью электрического тока
Данная формула показывает, в каких единицах измеряется электрическая мощность — это В⋅А.
Треугольник мощности
Важно! Определение такого показателя потребуется при выборе источников питания AC, проектировании проводки и защите электрических цепей. Это вызвано тем, что, хотя кажущаяся энергия больше, чем истинная потребляемая EP, протекающий через нагрузку ток становится большим. Под него необходимо будет выбрать размеры проводов и устройства защиты оборудования электросети.
Виды электрических мощностей
Существует энергия, генерируемая некоторыми механизмами для создания электромагнитного и электрического поля, которая им необходима для функционирования, — это реактивная составляющая нагрузки. С другой стороны, активная составляющая показывает способность агрегата преобразовать полученную энергию в механическую работу или тепло.
Этот полезный эффект называется активной мощностью и измеряется в кВтч.
Приемники, образованные чистыми резисторами: нагревательные приборы, лампы накаливания и другие, обладают исключительно этим типом нагрузки.
Обратите внимание! Коэффициент мощности относится к активному и кажущемуся энергопотреблению установки. Кажущаяся энергия в свою очередь зависит от активной и реактивной энергии. При одинаковом потреблении активной нагрузки, чем выше потребление реактивной составляющей, тем ниже коэффициент.
Активная мощность
Активная — реальная или истинная мощность (Pa) выполняет фактическую работу в нагрузке и выражается в Вт.
Для однофазной цепи:
Pa = I*U* cosφ = UI PF
Pa = 3* U* I* cosφ = 1,732 *U*I* PF
Реактивная мощность
Реактивная мощность (Pr) присутствует у электродвигателей, трансформаторов и устройств с реактивными сопротивлениями и индуктивностью. Эти устройства, как правило, индуктивные, поглощают энергию из сети, создавая магнитные поля, и возвращают ее, при смене направления синусоиды. При таком обмене энергией возникает дополнительное потребление, которое не способно быть использовано некоторыми приемниками. Этот вид называется реактивной энергией и измеряется в кВАр. Она вызывает перегрузку в линиях, трансформаторах и генераторах.
Для однофазной цепи:
Реактивная мощность
Во многих отношениях реактивную мощность можно рассматривать, как пену на бокале пива. Покупатель платит бармену за полный стакан пива, но выпивает только само пиво, которое всегда меньше.
Основным преимуществом использования распределения электроэнергии переменного тока является то, что уровень напряжения питания можно изменять с помощью трансформаторов, но не все электрооборудование потребляет реактивную мощность, которая занимает часть нагрузки на линиях электропередач.
В то время, как реальная или активная мощность — это энергия, подаваемая для работы двигателя, обогрева дома или освещения электрической лампочки, реактивная мощность обеспечивает важную функцию регулирования напряжения, помогая тем самым эффективно перемещать энергию через энергосистему по линиям электропередач.
Оборудование энергосистемы рассчитано на работу в пределах ± 5% от номинального напряжения. Колебания уровней напряжения приводят к неисправности различных приборов. Высокое напряжение повреждает изоляцию обмоток, в то время как низкое напряжение вызывает плохую работу различного оборудования, например, низкую освещенность шин или перегрев асинхронных двигателей.
Если потребляемая мощность больше, чем потребляемая с помощью передающих линий, ток, потребляемый от линий питания, увеличивается до такого высокого уровня, что вызывает резкое падение напряжения на стороне приемника. Если низкое напряжение будет продолжать падать — это приведет к отключению генераторирующих блоков, перегреву двигателей и выходу из строя другого оборудования.
Чтобы преодолеть это, реактивная мощность должна подаваться на нагрузку путем помещения реактивных катушек индуктивности или реакторов в линии электропередачи. Мощность этих реакторов зависит от количества видимой мощности, которая должна быть подана.
Полная мощность
Полная мощность — это энергия, подаваемая от поставщика в электросеть, для покрытия активной и реактивной составляющих.
Она рассчитывается по формуле:
Где: S — подача питания в цепь, В⋅А.
Кажущаяся EP будет измеряться в вольт-амперах (В⋅А) — напряжение системы, умноженное на текущий ток. Это комплексное значение, равное векторной сумме активной и реактивной энергии.
Что такое мощность электрического тока и как ее рассчитать
Мощность электрического тока является величиной, которая характеризует его свойства. Она определяется силой тока и напряжением. Единицей измерения является Ватт, в честь первооткрывателя этой величины. Обозначается она буквами Вт, в английском языке буквой W. В формулах эта характеристика имеет другое условное обозначение – латинская буква Р. Измеряется мощность тока ваттметром. Найти мощности нужно умножив силу тока на напряжение, то есть амперы на вольты получаем Ватты.
В статье будет рассказано подробно, о том, что такое мощность, как ее можно определить, от чего зависит и на что влияет. В качестве дополнения, материал содержит несколько видеоматериалов и один скачиваемый файл с подробным описанием этой характеристики.
Что такое мощность в электричестве
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий. Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт).
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе. Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Как измерить мощность
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрификации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Мощность электрического тока расчет и формулы
Для вычисления мощности тока в ваттах, силу тока в амперах умножаем на напряжение в вольтах. Обозначить мощность электрического тока латинским символом P, то приведенное выше правило можно записать в виде математической формулы P = I × U (1).
Воспользуемся этой формулой на практике. Необходимо вычислить, какая мощность электрического тока требуется для накала нити лампы, если напряжение накала равно 4 в, а ток накала 75 мА. Р= 0,075 А × 4 В = 0,3 Вт Мощность электрического тока можно определить и другим способом. Например, нам известны сила тока и сопротивление цепи, а напряжение величина неизвестная, тогда мы воспользуемся соотношением из закона Ома: U=I × R Подставим правую часть формулы (1) IR вместо напряжения U. P = I× U = I×IR или Р = I2×R.
Рассмотрим пример расчета: какая мощность теряется в реостате сопротивлением в 5 Ом, если через него идет ток, силой 0,5 А. Пользуясь формулой (2), вычислим:. P= I2 × R = 0,52×5 =0,25×5 = 1,25 Вт. Кроме того, мощность электрического тока можно рассчитать если известны напряжение и сопротивление, а сила тока величина неизвестна.
Для этого вместо силы тока I в формулу подставляется отношение U/R и тогда формула приобретает следующий вид: Р = I × U=U2/R (3) Разберем очередной практический пример с использованием этой формулы, при 2,5 вольта падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет определяться: Р = U2/R=(2,5)2/5=1,25 Вт; Выводы: Для нахождения мощности необходимо знать любые две из величин, из закона Ома. Мощность электрического тока равна работе тока, производимой в течение времени. P = A/t
Работа электрического тока
Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t
Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,
Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.
Как рассчитать сопротивление и мощность
Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.
Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.
Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.
Мощность тока
Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.
Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).
Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».
Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.
Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).
Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.
Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.