Что называется электрическим сопротивлением и проводимостью

Электрическое сопротивление проводника. Электрическая проводимость

Всякое тело оказывает прохождению электрического тока определенное противодействие. Например, при движении электронов по проводнику они будут сталкиваться с атомами и молекулами вещества, отдавая, им часть своей энергии. Чем больше таких столкновений, тем больше величина противодействия, оказываемого телом движению электрона, и, следовательно, тем меньше ток в проводнике.

Определение: Свойство проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением, или сопротивлением..

Сопротивление обозначается латинскими буквами R или r.

За единицу сопротивления принят ом (сокращенно обозначается Ом или Ω).

Сопротивление проводника равно одному ому, если при напряжении на его концах в один вольт в нем устанавливается ток в один ампер.

В практике сопротивления часто измеряются в килоомах (сокращенно обозначается кОм или кΩ) и мегомах (сокращенно— МОм или МΩ).

1 МОм = 1000 кОм = 1 000 000 Ом.

Для характеристики электрических свойств проводников часто используется величина, обратная сопротивлению, называемая проводимостью.

Определение: Электрической проводимостью (или проводимостью) называется способность вещества пропускать через себя электрический ток.

Что называется электрическим сопротивлением и проводимостью

Чем больше сопротивление проводника, тем меньше его проводимость, и наоборот. Проводимость обозначается латинской буквой G. За единицу проводимости принята проводимость проводника с сопротивлением в 1 ом. Эта единица называется сименс (сим).

Понятия сопротивления и проводимости имеют очень большое значение в электротехнике. Если вещество обладает небольшим сопротивлением (большой проводимостью), то оно называется проводником электрического тока, или проводником. К проводникам относятся большинство металлов (серебро, медь, алюминий, железо, никель, свинец, ртуть), а также сплавы металлов, морская вода, растворы солей и кислот и т. д. Особенно хорошо проводят электрический ток серебро и медь (обладают наилучшей проводимостью). Проводники используются для соединения отдельных элементов электрических схем.

Но есть вещества, которые очень плохо проводят электрический ток, т. е. имеют очень большое сопротивление. Такие вещества называются непроводниками электрического тока, или изоляторами. К изоляторам относятся фарфор, стекло, шерсть, смола, резина, эбонит, слюда, воск, парафин и т. д. Изоляторы широко применяются в электротехнике. Без них нельзя осуществить ни одной электрической цепи.

Следует помнить, что обычно сопротивление изолятора больше сопротивления проводника в несколько миллионов раз.

Кроме проводников и изоляторов, в природе существуют так называемые полупроводники электрического тока. Их проводимость больше, чем изоляторов, но меньше, чем проводников. К полупроводникам относятся: германий, кремний, селен, теллур, многие окислы, карбиды, сульфиды, огромное количество сплавов и химических соединений (арсенид галлия и др.) и т. д.

Характерная особенность полупроводников состоит в том, что их сопротивление в широких пределах изменяется под действием света, электрических и магнитных полей, радиоактивного излучения и от посторонних примесей.

Полупроводники применяются для изготовления диодов, транзисторов, тиристоров и интегральных схем.

Возможность использования полупроводников для усиления и генерации колебаний была открыта в 1922 г. сотрудником Нижегородской радиолаборатории имени В. И. Ленина радиолюбителем О. В. Лосевым, который назвал изобретенный им прибор кристадином.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Сопротивление, проводимость и закон Ома

Что называется электрическим сопротивлением и проводимостью

Электрическое сопротивление физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.

Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.

В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости

Что называется электрическим сопротивлением и проводимостью

где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².

Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.

Что называется электрическим сопротивлением и проводимостьюРис. 1. Удельное сопротивление проводника, ρ

Сопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).

Что называется электрическим сопротивлением и проводимостьюРис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников

Закон Ома

В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.

Существует несколько интерпретаций закона Ома.

Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R

Что называется электрическим сопротивлением и проводимостьюРис. 3. Закон Ома для участка цепи

Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А

Что называется электрическим сопротивлением и проводимостью

На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).

Что называется электрическим сопротивлением и проводимостьюРис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогии

Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.

Проводимость

Величина обратная сопротивлению, называется проводимостью:

Единица проводимости называется сименс (См): G, (g) = 1/Ом = См.

Источник

Электрическое сопротивление и проводимость

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Удельные сопротивления различных проводников

Материал проводникаУдельное сопротивление ρ в Что называется электрическим сопротивлением и проводимостью
Серебро
Медь
Алюминий
Вольфрам
Железо
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
0,016
0,0175
0,03
0,05
0,13
0,2
0,42
0,43
0,5
0,94
1,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

Что называется электрическим сопротивлением и проводимостью

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Что называется электрическим сопротивлением и проводимостью

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Что называется электрическим сопротивлением и проводимостью

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Что называется электрическим сопротивлением и проводимостью

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Что называется электрическим сопротивлением и проводимостью

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

Что называется электрическим сопротивлением и проводимостью

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Что называется электрическим сопротивлением и проводимостью

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Значения температурного коэффициента для некоторых металлов

Серебро
Медь
Железо
Вольфрам
Платина0,0035
0,0040
0,0066
0,0045
0,0032Ртуть
Никелин
Константан
Нихром
Манганин0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Что называется электрическим сопротивлением и проводимостью

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Что называется электрическим сопротивлением и проводимостью

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Источник

§ 4. Электрическое сопротивление и проводимость

Физическая природа электрического сопротивления.

При движении свободных электронов в проводнике они сталкиваются на своем пути с положительными ионами 2, атомами и молекулами вещества, из которого выполнен проводник, и передают им часть своей энергии. При этом энергия движущихся электронов в результате столкновения их с атомами и молекулами частично выделяется и рассеивается в виде тепла, нагревающего проводник.

Ввиду того, что электроны, сталкиваясь с частицами проводника, преодолевают некоторое сопротивление движению, принято говорить, что проводники обладают электрическим сопротивлением. Если сопротивление проводника мало, он сравнительно слабо нагревается током; если сопротивление велико, проводник может раскалиться.

Провода, подводящие электрический ток к электрической плитке, почти не нагреваются, так как их сопротивление мало, а спираль плитки, обладающая большим сопротивлением, раскаляется докрасна. Еще сильнее нагревается нить электрической лампы.

За единицу сопротивления принят Oм. Сопротивлением 1 Ом обладает проводник, по которому проходит ток 1 А при разности потенциалов на его концах (напряжении), равной 1 В. Эталоном сопротивления 1 Ом служит столбик ртути длиной 106,3 см и площадью поперечного сечения 1 мм2 при температуре 0°С.

На практике часто сопротивления измеряют тысячами Oм — килоомами(кОм) или миллионами Oм — мегаомами (МОм). Сопротивление обозначают буквой R ( r ).

Проводимость.

Всякий проводник можно характеризовать не только его сопротивлением, но и так называемой проводимостью — способностью проводить электрический ток. Проводимость есть величина, обратная сопротивлению.

Единица проводимости называется сименсом (См). 1 См равен 1/1 Ом. Проводимость обозначают буквой G (g). Следовательно,

G = 1 / R (4)

Удельное электрическое сопротивление и проводимость. Атомы разных веществ оказывают прохождению электрического тока неодинаковое сопротивление. О способности отдельных веществ проводить электрический ток можно судить по их удельному электрическому сопротивлению р.

За величину, характеризующую удельное сопротивление, обычно принимают сопротивление куба с ребром 1 м. Удельное электрическое сопротивление измеряют в Ом*м. Для суждения об электропроводности материалов пользуются также понятием удельная электрическая проводимость σ=1/ρ.

Проводниковые материалы применяют, главным образом, в виде проволок, шин или лент, площадь поперечного сечения которых принято выражать в квадратных миллиметрах, а длину — в метрах.

Поэтому для удельного электрического сопротивления подобных ма­териалов и удельной электрической проводимости введены и другие единицы измерения: ρ измеряют в Ом*мм 2 /м (сопротивление про­водника длиной 1 м и площадью поперечного сечения 1 мм 2 ), а σ — в См*м/мм 2 (проводимость проводника длиной 1 м и пло­щадью поперечного сечения 1 мм 2 ).

Из металлов наиболее высокой электропроводностью обладают серебро и медь, так как структура их атомов позволяет легко пере­двигаться свободным электронам, затем следует золото, хром, алю­миний, марганец, вольфрам и т. д. Хуже проводят ток железо и сталь.

Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05 % примесей. И наобо­рот, в тех случаях, когда необходим материал с высоким сопротив­лением (для различных нагревательных приборов, реостатов и пр.), применяют специальные сплавы: константан, манганин, нихром, фех­раль.

Следует отметить, что в технике, кроме металлических проводников, используют и неметаллические. К таким проводникам относится, например, уголь, из которого изготовляют щетки электрических машин, электроды для прожекторов и пр.

Проводниками электрического тока являются толща земли, живые ткани растений, животных и человека. Проводят электрический ток сырое дерево и многие другие изоляционные материалы во влажном состоянии.

Электрическое сопротивление проводника зависит не только от материала проводника, но и его длины l и площади поперечного сечения s. Электрическое сопротивление подобно сопротивлению, оказываемому движению воды в трубе, которое зависит от площади сечения трубы и ее длины.

Сопротивление прямолинейного проводника

R = ρ (l / s) (5)

Если удельное сопротивление ρ выражено в Ом*мм /м, то для того чтобы получить сопротивление проводника в омах, длину его надо подставлять в формулу (5) в метрах, а площадь поперечного сечения — в квадратных миллиметрах.

Зависимость сопротивления от температуры.

Электропроводность всех материалов зависит от их температуры. В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решетке металла увеличиваются, вследствие чего возрастает и сопротивление, которое они оказывают потоку электро­нов.

При охлаждении происходит обратное явление: беспорядоч­ное колебательное движение атомов в узлах кристаллической решетки уменьшается, сопротивление их потоку электронов пони­жается и электропроводность проводника возрастает.

В природе, однако, имеются некоторые сплавы: фехраль, константан, манганин и др., у которых в определенном интервале температур электрическое сопротивление меняется сравнительно мало. Подобные сплавы применяют в технике для изготовления различных резисторов, используемых в электроизмерительных при­борах и некоторых аппаратах для компенсации влияния темпера­туры на их работу.

О степени изменения сопротивления проводников при измене­нии температуры судят по так называемому температурному ко­эффициенту сопротивления а. Этот коэффициент представляет собой относительное приращение сопротивления проводника при увеличении его температуры на 1 °С. В табл. 1 приведены значения температурного коэффициента сопротивления для наиболее приме­няемых проводниковых материалов.

Сопротивление металлического проводника Rt при любой тем­пературе t

Rt = R0 [ 1 + α (t — t0) ] (6)

где R0— сопротивление проводника при некоторой начальной темпера­туре t0 (обычно при + 20 °С), которое может быть подсчитано по формуле (5);

t— t0 — изменение температуры.

Свойство металлических проводников увеличивать свое сопро­тивление при нагревании часто используют в современной технике для измерения температуры. Например, при испытаниях тяговых двигателей после ремонта температуру нагрева их обмоток опре­деляют измерением их сопротивления в холодном состоянии и после работы под нагрузкой в течение установленного периода (обычно в течение 1 ч).

Исследуя свойства металлов при глубоком (очень сильном) охлаждении, ученые обнаружили замечательное явление: вблизи абсолютного нуля (— 273,16 °С) некоторые металлы почти пол­ностью утрачивают электрическое сопротивление.

Они становятся идеальными проводниками, способными длительное время пропус­кать ток по замкнутой цепи без всякого воздействия источника электрической энергии. Это явление названо сверхпроводимостью.

В настоящее время созданы опытные образцы линий электропере­дачи и электрических машин, в которых используется явление сверхпроводимости. Такие машины имеют значительно меньшие мас­су и габаритные размеры по сравнению с машинами общего назна­чения и работают с очень высоким коэффициентом полезного дей­ствия.

Линии электропередачи в этом случае можно выполнить из проводов с очень малой площадью поперечного сечения. В пер­спективе в электротехнике будет все больше и больше использо­ваться это явление.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *