Что называется электрическим контактом
Виды и типы электрических контактов
Электрическим контактом называют место соприкосновения двух или более токоведущих деталей, по которому протекает ток из одной детали в другую. Конструктивный узел с этими деталями также называют электрическим контактом.
Электрические контакты принято разделять на три вида в зависимости от возможности перемещения деталей контакта (контактных деталей) во время работы ЭА. Контакт может быть неразмыкаемым, скользящим или размыкаемым.
К неразмыкаемым контактам относят такие узлы проводников тока, детали которых не перемещаются друг относительно друга, а остаются надежно скрепленными при работе ЭА. Обычно ЭА присоединяется к внешним электрическим цепям при помощи неразмыкаемых контактов. Они могут быть разъемными, разборными и неразборными.
В скользящих контактах одна контактная деталь перемещается относительно другой детали, не нарушая электрической связи между этими деталями. Например, электрический контакт неподвижной детали аппарата с вращающейся деталью часто создают при помощи щетки и кольца, расположенных соответственно на неподвижной и вращающейся частях ЭА.
Размыкаемые контакты при работе ЭА замыкаются, приходя в соприкосновение, и размыкаются, выходя из соприкосновения и разрывая электрическую цепь. Такие контакты называют коммутирующими контактами. Среди коммутирующих контактов выделяют замыкающие контакты, размыкающие контакты и переключающие контакты.
На рис. 2.1 приведена иллюстрация условных обозначений контактов, отличающихся друг от друга по возможности перемещения одной контактной детали относительно другой контактной детали во время работы ЭА.
Совокупность из нескольких электрических контактов аппарата с устройствами гашения электрической дуги и другими вспомогательными деталями называют контактной системой (КС) аппарата.
Место соприкосновения контактных деталей характеризуют «кажущейся» и действительной площадями соприкосновения. Вследствие того, что поверхности деталей имеют шероховатость (бугорки и впадины), они соприкасаются не по всей кажущейся площади, а по отдельным малым площадкам, образующим фактическую площадь соприкосновения. Количество таких площадок зависит от геометрических форм соприкасающихся поверхностей, силы FК нажатия одной контактной детали на другую, прочности материала деталей.
В зависимости от кажущейся площади соприкосновения условно различают три типа контактов: точечный, линейный, плоскостной. Соответственно, кажущееся соприкосновение контактных деталей имеет место в точке (по микроплощадке), по линии, по плоскости (по поверхности).
В электрических аппаратах применяют коммутирующие контакты всех трех типов.
Основные параметры коммутирующих контактов
В зависимости от конструкции различают мостиковые, пальцевые, врубные, розеточные, роликовые и стыковые коммутирующие контакты.
Рассмотрим основные параметры коммутирующих контактов на примере мостикового контакта. Изобразительная модель контактного узла с мостиковым контактом показана на рис. 2.2.
![]() |
В состав контактного узла входят неподвижные контактные стойки 1, электрически соединяемые контактным мостиком 2. Контактные детали 1 и 2 образуют электрический контакт.
Мостик 2, толкатель 3 и контактная пружина 4 образуют подвижный контактный узел (ПКУ) 5. Пределы перемещения (ρ) ПКУ условно ограничены затемненными треугольниками.
Для разомкнутого положения контакта (рис. 2.2а) между контактными деталями создается необходимый по величине зазор δ>0. Минимальное расстояние между контактными поверхностями разомкнутого контакта называют раствором (δр) контакта.
Чтобы обеспечить надежное соприкосновение контактных деталей при замыкании контакта, кинематику ПКУ предусматривают такой, чтобы контактные детали вошли в соприкосновение раньше, чем толкатель подвижного узла дойдет до упора. Благодаря этому контактный мостик после соприкосновения с контактными стойками останавливается, а толкатель продолжает еще двигаться в прежнем направлении до упора, сжимая контактную пружину. Тогда, если при конечном положении толкателя у замкнутого контакта убрать неподвижные контактные стойки, то мостик контакта сместится на некоторое расстояние, называемое провалом контакта.
На рис. 2.2б контакт показан в замкнутом положении и приведен график, поясняющий понятия «раствор» и «провал» контакта.
Когда контакт разомкнут (рис. 2.2а), контактная пружина в подвижном контактном узле контактной системы сжата на величину ΔlН (м) относительно ее длины в свободном состоянии. Тем самым обеспечивается так называемое начальное контактное нажатие (сила нажатия)

где с – жесткость контактной пружины (Н/м).
При замкнутом положении контакта, когда толкатель перемещен до верхнего упора (рис. 2.2б), сила нажатия возрастает до значения
за счет дополнительного сжатия пружины на величину ΔlК. Силу FКК называют конечным контактным нажатием.
На рис. 2.3а показана структурная схема контактного узла и устройства, с которыми он взаимодействует (они показаны пунктирными линиями).
Характеристика управления коммутирующего контакта КК (функция RK от FK и δ) зависит от коммутируемого им тока и падения напряжения на контакте. Ток и напряжение электрической цепи являются возмущающими воздействиями на КК. Действие этих возмущающих воздействий отображено пунктирной стрелкой на структурной схеме (рис. 2.3а).
Контакты в электроустановках и электрических аппаратах
Электрический контакт — соединение проводников, позволяющее проводить электрический ток. Проводники тока, образующие контакт, называются контактными телами или контактами положительными и отрицательными в зависимости от того, с каким полюсом источника тока они соединены.
Слово «контакт» означает «соприкосновение», «касание». В электрической системе, объединяющей различные аппараты, машины, линии и т. д., для их соединения используется огромное число контактов. От качества контактных соединений в значительной степени зависит надежность работы оборудования и системы.
Классификация электрических контактов
Электрические контакты бывают неподвижные и подвижные. Неподвижные контакты — разного рода разъемные и неразъемные, предназначены для длительного соединения проводников. Разъемные контакты осуществляются зажимами, болтами, винтами и т. п., неразъемные — пайкой, сваркой или клепкой. Подвижные контакты делятся на разрывные (контакты реле, кнопок, выключателей, контакторов и т. п.) и скользящие (контакты между коллектором и щетками, контакты коммутаторов, потенциометров и т. п.).
Простейший вид электрического контакта — контактная пара. Сложным видом контакта является, например, контакт, образующий двойное параллельное замыкание цепи или двойное последовательное замыкание (последний называется мостиковым). Контакт, переключающий цепь при срабатывании аппарата, называется переключающим. Переключающий контакт, разрывающий цепь в момент переключения, называется перекидным, а не разрывающий цепь в момент переключения — переходным.
В зависимости от формы электрические контакты делятся на:
точечные (острие — плоскость, сфера — плоскость, сфера — сфера), которые обычно используются в чувствительных приборах и реле, коммутирующих незначительные нагрузки;
линейные — имеют место при соприкосновении контактов в виде цилиндрических тел и при щеточных контактах;
плоскостные — в сильноточной коммутационной аппаратуре.
Контакты крепятся обычно на плоских пружинах, т. н. контактных (из нейзильбера, фосфористых и бериллиевых бронз и, реже, стали), к которым предъявляются высокие требования с точки зрения постоянства их механических качеств в течение всего срока службы аппарата, исчисляемого часто десятками и более млн. циклов. Выполненный в виде отдельного блока набор пружин, которые переключаются одновременно, образует контактную группу (или пакет).
Особенности работы электрических контактных соединений
Соприкосновение контактов происходит не по всей поверхности, а лишь в отдельных точках вследствие шероховатостей на поверхности контакта при любой точности ее обработки. Практически независимо от вида контактов соприкосновение контактных элементов всегда происходит по небольшим площадкам.
Объясняется это тем, что поверхность контактных элементов не может быть идеально ровной. Поэтому практически при сближении контактных поверхностей сначала в соприкосновение приходят несколько выступающих вершин (точек), а затем но мере увеличения давления происходит деформация материала контактов и эти точки превращаются в небольшие площадки.
Линии электрического тока, проходя от одного контакта к другому, стягиваются к этим точкам соприкосновения. Поэтому контакт вносит в коммутируемую им цепь некоторое дополнительное контактное сопротивление Rк.
Если поверхность контакта покрыта пленкой, то R к увеличивается. Однако очень тонкие пленки (до 50 А) не оказывают влияния на сопротивление контакта вследствие туннельного эффекта. Более толстые пленки могут разрушаться под влиянием контактного усилия или приложенного напряжения.
Электрический пробой пленок на контакте называется фриттингом. Если пленки не разрушены, то R к в основном определяется сопротивлением пленок. Сразу после зачистки контакта, а также при достаточных контактном усилии и напряжении в цепи контакта его сопротивление определяется главным образом сопротивлением областей стягивания.

Для уменьшения нагрева можно увеличить массу металла контактов и их охлаждаемую поверхность, что усилит теплоотвод. Чтобы снизить переходное сопротивление, необходимо повысить контактное давление, выбрать соответствующий материал и тип контактов.
Например, размыкаемые контакты, предназначенные для работы на открытом воздухе, рекомендуется изготавливать из материалов, слабо поддающихся окислению, или покрывать их поверхность антикоррозийным слоем. К таким материалам относится, в частности, серебро, которым можно покрыть контактные поверхности.
Медные неразмыкаемые контакты можно лудить (луженая поверхность труднее поддается окислению). Для тех же целей используют покрытие контактных поверхностей смазкой, например, вазелином. Хорошо предохраняются от коррозии без других специальных мер контакты, погруженные в масло. Это используется в масляных выключателях.
Работа любого электрического состоит из 4 этапов — разомкнутое состояние, замыкание, замкнутое состояние и размыкание, каждый из которых оказывает влияние на надежность контактирования.
В разомкнутом состоянии на электрический контакт воздействует внешняя среда и в результате на их поверхности образуются пленки.
В замкнутом состоянии, когда контакты прижаты друг к другу и через них проходит ток, они разогреваются и деформируются; при некоторых условиях, если контакты перегреются, может наступить сваривание.
При замыкании и размыкании контактов происходят мостиковые или разрядные явления, сопровождающиеся испарением и переносом металла контакт., изменяющим его поверхность. Кроме того, возможен механический износ контактов в результате ударов и скольжения друг по другу.
По мере сближения контактов на очень малых расстояниях, даже при сравнит, небольших напряжениях источника питания, градиент поля становится настолько большим, что электрическая прочность промежутка нарушается и наступает пробой. Если же на поверхности контактов имеются посторонние частицы, в особенности содержащие углерод, то при их соприкосновении происходит испарение и создаются условия для разряда.
Размыкание является обычно самым тяжелым этапом работы электрического контакта В зависимости от параметров цепи (R, L и С) и величины приложенного напряжения при размыкании возникают явления, вызывающие износ контактов. Если напряжение цепи больше напряжения U пл, при котором металл контактов плавится, то, т. к. при их расхождении уменьшается контактное усилие и, следовательно, площадь соприкосновения, будут расти сопротивление и температура.
Когда температуpa превысит точку плавления металла, между контактными поверхностями возникнет расплавленный металлический мостик, который постепенно растягивается и затем в наиболее горячем месте разрывается. Высокая температуpa при разрыве мостика облегчает возникновение разряда.

Такое соединение обладает одновременно хорошей электропроводностью вследствие использования меди или серебра и высокой температурой плавления благодаря использованию вольфрама или молибдена.
Рабочие контакты выполняют из материала с высокой электропроводностью, а дугогасительные контакты — из тугоплавкого материала. В нормальном режиме, когда контакты замкнуты, основная часть тока протекает через рабочие контакты.

При включении цепи сначала замыкаются дугогасительные контакты, а затем уже рабочие. Таким образом, рабочие контакты фактически полного разрыва или замыкания цепи не осуществляют. Это исключает опасность их оплавления и сваривания.
Для устранения возможности самопроизвольного размыкания контактов от электродинамических усилий при протекании токов короткого замыкания контактные системы конструируют так, чтобы электродинамические усилия при этих условиях обеспечивали дополнительное контактное давление, а для предотвращения возможного оплавления и сваривания контактов в момент включения цепи на короткое замыкание — ускоренное включение.
Подвижные размыкаемые контакты не должны также разрушаться под действием высокой температуры электрической дуги, которая образуется при их размыкании, и надежно замыкаться без приваривания и оплавления при включении на короткое замыкание. Рассмотренные выше меры способствуют также выполнению и этих требований.
Особенно хорошо сопротивляются разрушающему действию электрической дуги контакты из металлокерамики, которая представляет собой смесь измельченных порошков меди с вольфрамом или с молибденом и серебра с вольфрамом.
Такое соединение обладает одновременно хорошей электропроводностью вследствие использования меди или серебра и высокой температурой плавления благодаря использованию вольфрама или молибдена.
Основные конструкции контактов в электроустановках и электрических аппаратах
Конструкция неподвижных (жестких) неразмыкаемых контактных соединений должна обеспечивать надежное прижатие контактных поверхностей и минимальное переходное сопротивление. Шины лучше соединять несколькими болтами меньшего диаметра, чем одним большим, так как при этом обеспечивается большее число точек соприкосновения. При стягивании шин накладками переходное сопротивление ниже, чем при использовании сквозных болтов, когда в шинах требуется сверлить отверстия. Высокое качество контактного соединения дает сварка шин.
Для получения линейного контакта на полосах ножа штампуют полуцилиндрические выступы, а для увеличения нажатия полосы сжимаются стальной пружинящей скобой. Контакты рубящего типа используют чаще всего в рубильниках и разъединителях.
Контактная часть пальцевого самоустанавливающегося контакта выполнена в виде пальцев, у пластинчатого — в виде пластин, у торцового — в виде плоского наконечника, у розеточного — в виде ламелей (сегментов), у щеточного — в виде щеток, набранных из упругих, тонких медных или бронзовых пластин.
Указанные контактные части (детали) в ряде конструкций могут изменять в ограниченных пределах свое положение относительно неподвижных контактов. Для их надежного электрического соединения предусматриваются гибкие токоведущие связи.
Упругость размыкающих контактов и необходимая сила давления достигаются обычно при помощи пластинчатых или спиральных пружин.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Электрические контакты: принцип работы, типы, защита контактов

Разновидности контактов
Известны 3 разновидности контактов: неразъемный контакт (соединение двух шин болтом), скользящий (с помощью реостата) и коммутирующий.
По форме контакты бывают
Электрические контакты также бывают подвижные и неподвижные.
В процессе работы неподвижных контактов, токоведущие надежно и плотно соединенные между собой элементы не перемещаются друг относительно друга.
Чтобы создать замкнутую электрическую цепь, нужно произвести несколько контактов.
Одним из примеров подвижного контакта является устройство рычажного контакта, рассчитанное на средние и большие токи, в котором в качестве материала применяется медь.
Также к подвижным контактам можно отнести герметизированные магнитоуправляемые контакты или герконы, простейший пример которых представляет собой запаянную стеклянную колбу миниатюрного размера, с двумя плоскими впаянными контактными пружинами, состоящими из мягкой магнитной стали.
Если эти герметизированные магнитоуправляемые контакты (герконы) поместить в созданное обмоткой или постоянным магнитом магнитное поле, то их пружины будут намагничиваться и затем притягиваться друг к другу.
В это время происходит замыкание контактов и, как следствие, может замкнуться электрическая цепь. Контакты из-за силы упругости пружин разомкнутся только после полного исчезновения магнитного поля. Поверхности пружин на контактах покрываются тонким слоем драгоценного металла, имеющего малое удельное электрическое сопротивление (платина, золото, серебро).
С помощью герконов можно производить коммутации в электрических цепях при малых значениях тока от 0,5 до 1А. Колбу геркона вакуумируют или заполняют инертным газом.
Элементы геркона имеют малую массу и высокое быстродействие контактов от 0,5 до 1,0 мс.
Износоустойчивость — это самое важное из свойство герконов. У некоторых видов герконов количество переключений может достичь до двух тысяч в секунду, а срабатываний до сотен миллионов.
Герсиконы — это герметические магнитоуправляемые силовые контакты, являющиеся разновидностью герконов, которые позволяют произвести коммутации в электрических цепях при значениях тока 60А, 100А или 180А и при напряжении 220 440В.
Интересное видео о физике электрических контактов смотрите ниже:
Электрическое сопротивление контактов
Работу контактов определяет переходное электрическое сопротивление, которое зависит от площади контактирования. Чтобы уменьшить переходное сопротивление контактов, необходимо увеличить силу прижатия контактов.
В зависимости от силы переходного сопротивления, ток в цепи, вызывает нагрев контактов, который, в свою очередь, способствует увеличению переходного сопротивления и приводит к еще большему нагреву.
Таким образом достигается допустимый максимум рабочей температуры, находящийся в пределах от 100 до 120°С. По мере увеличения значения номинального тока коммутирующего аппарата, контактное переходное сопротивление должно уменьшаться с помощью повышения контактного нажатия, при этом обязательно необходимо увеличить поверхность охлаждения.
Состав материала из которого изготавливают токоведущие элементы контактов содержит материалы с минимальным удельным электрическим сопротивлением — серебро, медь или металлокерамические композиции.
Искрение на контактах и электрическая дуга
При значительных напряжениях и токах во время размыкания электрической цепи, между расходящимися контактами, образуется электрический разряд. В это же время, в площадке контактирования, при расхождении контактов происходит резкий рост переходного сопротивления и разогрев контактов до их расплавления и образования контактного перешейка из расплавленного металла.
В результате высокой температуры, контакты могут разогреваться и рваться, при этом металл контактов испаряется, а между контактами образуется ионизирующий проводящий воздушный промежуток, в котором под воздействием высокого напряжения, возникает электрическая дуга, которая снижает быстродействие коммутационного аппарата и способствует дальнейшему разрушению контактов.
Чтобы прекратить появление дуги, нужно увеличить сопротивление в цепи с помощью увеличения расстояния между контактами, или применить специальные меры для ее погашения.
Разрывная или коммутируемая мощность контактов — это произведение предельных значений тока и напряжения в цепи, при которых на минимальном расстоянии, между контактами электрическая дуга не образуется.
Электрическая дуга гаснет, когда в цепях переменного тока мгновенное значение тока достигнет нуля и может вновь появиться, если напряжение на контактах будет расти быстрее, чем произойдет восстановление электрической прочности промежутка между контактами.
В любом случае, в цепи переменного тока дуга неустойчива, а разрывная мощность контактов выше в несколько раз, чем в цепи постоянного тока.
В маломощных электрических аппаратах электрическая дуга на контактах появляется редко, но очень часто происходит опасное для чувствительных аппаратов искрение или пробой изоляционного промежутка. Пробой образуется в слаботочных цепях во время быстрого размыкания контактов и может привести к ложным отключениям и значительно сокращает срок службы контактов. С целью уменьшения искрения, применяются устройства искрогашения.
Ещё одно интересное видео об электрических контактах:
Устройства искро- и дугогашения

Самый эффективный способ для гашения электрической дуги — это ее охлаждение с помощью соприкосновения с изоляционными стенками специальных камер, которые отбирают теплоту дуги или за счет ее перемещения в воздухе.
В современных аппаратах широкое распространение получили дугогасительные камеры с узкой щелью и магнитным дутьем.
Дугу можно рассматривать как проводник с током; если его поместить в магнитное поле, то возникнет сила, которая вызовет перемещение дуги. При своем движении дуга обдувается воздухом; попадая в узкую щель между двумя изоляционными пластинами, она деформируется и вследствие повышения давления в щели камеры гаснет (рис. 2.4).
Щелевая камера образована двумя стенками 1, выполненными из изоляционного материала. Зазор между стенками очень мал. Катушка 4, включенная последовательно с главными контактами 5, возбуждает магнитный поток Ф, который направляется ферромагнитными наконечниками 2 в пространство между контактами. В результате взаимодействия дуги и магнитного поля появляется сила F, вытесняющая дугу к пластинам 7.
Эта конструкция дугогасительной камеры применяется и на переменном токе, так как с изменением направления тока изменяется направление потока Ф, а направление силы F остается неизменным.
Для уменьшения искрения на маломощных контактах постоянного тока применяют включение диода параллельно нагрузочному устройству (рис. 2.5). При этом цепь после коммутации (после отключения источника) замыкается через диод, таким образом уменьшается энергия искрообразовния.










