Что называется биссектрисой угла

Биссектриса — свойства, признаки и формулы

Базовым понятием и одним из наиболее интересных и полезных объектов школьной математики является биссектриса. С её помощью доказываются многие положения планиметрии, упрощается решение задач.

Известные свойства позволяют рассматривать геометрические фигуры с разных точек зрения. Появляется вариативность при выборе пути доказательств.

Становится возможным использование инструмента алгебры, например, свойство пропорции, нахождение неизвестных величин, решение алгебраических уравнений при рассмотрении геометрических вопросов.

Что такое биссектриса в геометрии

Что называется биссектрисой угла

Рассматривают луч, выходящий из вершины угла или его часть (отрезок), который делит угол пополам. Такой луч (или, соответственно, отрезок) называется биссектрисой.

Что называется биссектрисой угла

Часто для треугольников определение немного сужают, говоря об отрезке, соединяющем вершину угла, делящем его пополам, с точкой на противолежащей стороне. При этом рассматривается внутренняя область фигуры.

В то же время, часто при решении задач используются прямые, делящие внешние углы на два равных.

Биссектриса прямоугольного треугольника

Для прямоугольного треугольника одна из биссектрис образует равные углы, величины которых хорошо просчитываются (45 градусов).

Что называется биссектрисой угла

Это помогает вычислять углы при решении задач, связанных с фигурами, которые можно представить в виде прямоугольных треугольников или прямоугольников.

Что называется биссектрисой угла

Свойства биссектрисы треугольника

1. Каждая точка этой линии равноудалена от сторон угла. Часто эту характеристику выбирают в качестве определения, поскольку верно и обратное утверждение для любого произвольного треугольника. Это позволяет находить и радиус вписанной окружности.

2. Все внутренние отрезки, делящие углы пополам, пересекаются в одной точке, которая является центром окружности, вписанной в фигуру, т. е. точка пересечения находится на равных расстояниях от сторон.

Что называется биссектрисой угла

Данное свойство позволяет решать целый класс разнообразных задач, выводить формулы для радиусов вписанных окружностей правильных многоугольников.

Благодаря этому утверждению, легко доказывается следующее правило:

Площадь описанного многоугольника равна:

где p – полупериметр, а r – радиус вписанной окружности.

Это позволяет находить решение не только планиметрических, но и стереометрических задач.

Важную роль играют внешние биссектрисы треугольника. Вместе с внутренними они образуют прямые углы;

3. Сумма величин двух прилежащих сторон, делённая на длину противолежащей стороны, задаёт отношение частей биссектрисы (считая от вершины), полученных точкой пересечения всех трёх соответствующих линий.

Некоторые виды геометрических фигур, в силу своих особенностей, порождают особые примечательные характеристики;

4. В равнобедренном треугольнике биссектриса, проведённая к основанию, одновременно является медианой и высотой. Две другие – равны между собой.

В этом случае основание параллельно внешней биссектрисе.

Обратное положение также имеет место. Если прямая проведена параллельно основанию равнобедренного треугольника через некоторую вершину, то внешняя биссектриса при этой вершине является частью этой линии;

5. Для равностороннего многоугольника важной характеристикой считается равенство всех биссектрис;

6. У правильного треугольника все внешние биссектрисы параллельны сторонам;

7. Выделяют несколько особенностей, среди которых есть следующая теорема:

«Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам».

Что называется биссектрисой угла

Обратное утверждение («Прямая делит сторону на отрезки, пропорциональные двум другим сторонам») выражает признаки того, что рассматриваемая линия является внутренней биссектрисой;

8. Разносторонний треугольник позволяет определить взаимное расположение его высоты, медианы и биссектрисы, проведённых из одной точки. В частности, медиана и высота располагаются по разные стороны от третьей линии.

Все формулы биссектрисы в треугольнике

В зависимости от исходных данных, длина биссектрисы, проведённой к стороне C, lc, равна:

Что называется биссектрисой угла

Примеры решения задач

Задача №1

В ΔABC ∠C = 90°, проведена биссектриса острого угла. Отрезок, соединяющий её основание с точкой пересечения медиан, перпендикулярен катету. Найти углы заданной фигуры.

Что называется биссектрисой угла

Пусть ∠ACB = 90°, AD – биссектриса, BE – медиана, O – точка пересечения медиан, OD⊥BC.

Тогда OE : OB = 1 : 2по свойству медиан.

Так как OD⊥BC, то ODIIOC, следовательно, ΔBOD ∼ ΔBEC по второму признаку подобия, поэтому, по свойству подобных фигур, CD : DB = 1 : 2.

Это означает, что CA : AB = 1 : 2.

Так как катет равен половине гипотенузы, то ∠ABC = 30°, откуда ∠CAB = 60°.

Задача №2

Диагональ параллелограмма делит его острый угол пополам. Доказать, что этот параллелограмм является ромбом.

Что называется биссектрисой угла

Так как ABCD – параллелограмм, то ∠DAC = ∠ACB, как накрест лежащие при параллельных прямых AD, BC и секущей AC.

По условию, ∠DAC = ∠ACB = ∠BAC, поэтому ΔACB равнобедренный, то есть AB = BC, следовательно, ABCD – ромб.

Источник

Биссектриса угла

Сегодня будет очень лёгкий урок. Мы рассмотрим всего один объект — биссектрису угла — и докажем важнейшее её свойство, которое очень пригодится нам в будущем.

Только не надо расслабляться: иногда ученики, желающие получить высокий балл на том же ОГЭ или ЕГЭ, на первом занятии даже не могут точно сформулировать определение биссектрисы.

И вместо того, чтобы заниматься действительно интересными задачами, мы тратим время на такие простые вещи. Поэтому читайте, смотрите — и берите на вооружение.:)

Для начала немного странный вопрос: что такое угол? Правильно: угол — это просто два луча, выходящих из одной точки. Например:

Что называется биссектрисой углаПримеры углов: острый, тупой и прямой

Определение. — это луч, который выходит из вершины этого угла и делит угол пополам.

Для приведённых выше углов биссектрисы будут выглядеть так:

Что называется биссектрисой углаПримеры биссектрис для острого, тупого и прямого угла

Хорошо, с определением разобрались. Теперь нужно понять, какие свойства есть у биссектрисы.

Основное свойство биссектрисы угла

На самом деле у биссектрисы куча свойств. И мы обязательно рассмотрим их в следующем уроке. Но есть одна фишка, которую нужно понять прямо сейчас:

Теорема. — это геометрическое место точек, равноудалённых от сторон данного угла.

В переводе с математического на русский это означает сразу два факта:

Прежде чем доказывать эти утверждения, давайте уточним один момент: а что, собственно, называется расстоянием от точки до стороны угла? Здесь нам поможет старое-доброе определение расстояния от точки до прямой:

Определение. — это длина перпендикуляра, проведённого из данной точки к этой прямой.

Что называется биссектрисой углаГрафическое представление расстояния от точки до прямой

Поскольку угол — это просто два луча, а каждый луч — это кусок прямой, легко определить расстояние от точки до сторон угла. Это просто два перпендикуляра:

Что называется биссектрисой углаОпределяем расстояние от точки до сторон угла

Вот и всё! Теперь мы знаем, что такое расстояние и что такое биссектриса. Поэтому можно доказывать основное свойство.

Как и обещал, разобьём доказательство на две части:

1. Расстояния от точки на биссектрисе до сторон угла одинаковы

Что называется биссектрисой угла

Что называется биссектрисой углаПровели перпендикуляры к сторонам угла

2. Если расстояния равны, то точка лежит на биссектрисе

Что называется биссектрисой угла

В заключение доказательства отметим красными дугами образовавшиеся равные углы:

Как видите, ничего сложного. Мы доказали, что биссектриса угла — это геометрическое место точек, равноудалённых до сторон этого угла.:)

Теперь, когда мы более-менее определились с терминологией, пора переходить на новый уровень. В следующем уроке мы разберём более сложные свойства биссектрисы и научимся применять их для решения настоящих задач.

Источник

Биссектриса угла, биссектриса треугольника: что это такое и в чем разница

Что называется биссектрисой угла

Биссектриса угла – луч, исходящий из вершины угла и разделяющий его пополам.

Биссектриса треугольника – отрезок, проведенный от вершины угла до противолежащей стороны треугольника.

В треугольнике может быть только три (внутренних) биссектрисы, каждая из которых будет делить свою вершину на два равных угла.

Что означает слово «биссектриса»?

«Биссектриса» – слово латинского происхождения, состоящее из двух частей: «bi» – «пара, двойное» и «sectio» – «разрезать, делить».

Название отражает суть: деление чего-то пополам, то есть на две равные части. В случае биссектрисы в роли «чего-то» выступает угол, который она делит на два угла.

Если при упоминании биссектрисы вам на ум приходит «крыса, бегающая по углам и делящая их пополам» из известного двустишия, то в принципе это не будет ошибкой ее определения, с той лишь поправкой, что каждая такая «крыса» должна замереть в конкретном положении для заданного угла, чтобы каждая ее точка была равноудалена от сторон этого угла.

Свойства биссектрисы

Есть несколько качеств биссектрисы, по которым ее легко узнать или вычислить.

В любом треугольнике все три биссектрисы всегда будут пересекаться в одной и той же точке.

Точка пересечения биссектрис в треугольнике является центром вписанной в этот треугольник окружности.

В равнобедренном треугольнике биссектриса совпадает с медианой и высотой.

В равностороннем треугольнике (это равнобедренный треугольник с равными углами) все три биссектрисы являются высотами и медианами. Кроме того, все они – три биссектрисы, медианы и высоты – будут одной и той же длины.

И последнее по счету (но не по значению) свойство биссектрисы. Зная его, вы сможете решить большинство задач по геометрии, где нужно вычислить длины сторон треугольника.

Биссектриса делит противоположную своему углу сторону треугольника на два отрезка. И отношение длин этих отрезков (записывается в виде дроби) в точности равно отношению двух соседних сторон всего треугольника.

Применение биссектрисы на практике

Биссектриса не является лишь абстрактным математическим понятием. На самом деле без знания этого термина и его сути невозможно обойтись во многих сферах: при строительстве крыши, при защите радиовысотомеров от радиолокационных ракет, при конструировании кораблей, при исследовании следов орудий взлома и так далее.

Источник

Биссектриса угла

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы угла треугольников и других фигур.

Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек…

Нам же знание этих свойств поможет решить некоторые задания ЕГЭ!

Биссектриса угла — коротко о главном

Биссектриса угла — это линия, делящая угол пополам.

Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.

Что называется биссектрисой угла

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Что называется биссектрисой угла

Теорема 1. Три биссектрисы в треугольнике пересекаются в одной точке, и эта точка – центр вписанной в треугольник окружности.

Что называется биссектрисой угла

Теорема 2. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.

Что называется биссектрисой угла

Теорема 3. Биссектриса угла параллелограмма отсекает равнобедренный треугольник.

Что называется биссектрисой угла

Теорема 4. Биссектрисы внутреннего и внешнего углов треугольника перпендикулярны.

Что называется биссектрисой угла

Теорема 5. Биссектрисы односторонних углов параллелограмма и трапеции пересекаются под прямым углом.

Что называется биссектрисой угла

Что называется биссектрисой угла

Теорема 6. Отношение отрезков, на которые биссектриса делит противоположную сторону, такое же, как и отношение двух сторон, между которыми эта биссектриса прошла.

Что называется биссектрисой угла

А теперь подробнее…

Определение биссектрисы угла

Помнишь шутку: «Биссектриса это крыса, которая бегает по углам и делит угол пополам»?

Так вот, настоящее определение биссектрисы угла очень похоже на эту шутку — биссектриса действительно делит пополам угол (а не отрезок, например):

Биссектриса угла – это линия, делящая угол пополам.

Или еще вот такое определение биссектрисы:

Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.

А вот определение биссектрисы треугольника:

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Что называется биссектрисой угла

Тебе встретилась в задаче биссектриса? Постарайся применить одно (а иногда можешь и несколько) из следующих потрясающих свойств.

Биссектриса равнобедренного треугольника

Биссектриса равнобедренного треугольника, проведенная к основанию, является и медианой, и высотой.

Но представляешь, это ещё не всё. Верна ещё и обратная теорема:

Если в треугольнике биссектриса, проведённая из какого-то угла, совпадает с медианой или с высотой, то этот треугольник равнобедренный.

Что называется биссектрисой угла

Мы скоро докажем обе этих теоремы, а пока твердо запомни:

Биссектриса совпадает с высотой и медианой только в равнобедренном треугольнике!

Зачем же это твердо запоминать? Как это может помочь?

А вот представь, что у тебя задача:

Дано: \( AB=5,

Найти: \( \displaystyle BC. \)

Что называется биссектрисой угла

Ты тут же соображаешь, \(\displaystyle BD \) биссектриса и, о чудо, она разделила сторону \( \displaystyle AC \) пополам! (по условию…).

Если ты твердо помнишь, что так бывает только в равнобедренном треугольнике, то делаешь вывод, что AB=BC и значит, пишешь ответ: BC=5.

Здорово, правда? Конечно, не во всех задачах будет так легко, но знание обязательно поможет!

Доказательство теорем о совпадении биссектрисы с медианой и высотой в равнобедренном треугольнике

Почему в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Смотри: у \( \triangle ABL \) и \( \triangle CBL \) равны стороны \( AB \) и \( BC \), сторона \( BL \) у них вообще общая и \( \angle 1=\angle 2\). (\( BL \) – биссектриса!)

Что называется биссектрисой угла

И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними.

Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему «Треугольник») и заключаем, что \( \triangle ABL=\triangle CBL \), а значит \( AL \)= \( CL \) и \( \angle 3=\angle 4 \).

\( AL \) = \( CL \) – это уже хорошо – значит, \( BL \) оказалась медианой.

А вот что такое \( \angle 3=\angle 4 \)?

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Будет немного сложнее, но пока мы отвлечемся на термины — повторим что такое биссектриса, медиана и высота, чем они похожи и чем они отличаются.

Биссектриса, медиана, высота — определения и отличия

Кстати, а помнишь ли ты все эти термины? Чем они отличаются друг от друга?

Если нет, не страшно. Сейчас разберемся.

Чем биссектриса, медиана и высота похожи между собой?

Биссектриса, медиана и высота – все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной.

Чем биссектриса, медиана и высота отличаются между собой?

Вернемся к нашим баранам — к свойствам биссектрисы…

Угол между биссектрисами любого треугольника

B \( \triangle ABC \)проведем две биссектрисы \( AO \)и \( OC \).

Они пересеклись. Какой же угол получился у точки \( O \)?

Что называется биссектрисой угла

Применим этот потрясающий факт. С одной стороны, из \( \triangle ABC \):

\( \angle A+\angle B+\angle C=180<>^\circ \), то есть \( \angle B=180<>^\circ \text< >-\text< >\left( \angle A+\angle C \right) \).

Теперь посмотрим на \( \triangle AOC \):

\( \angle 2+\angle 6+\angle 3=180<>^\circ \)

Но биссектрисы, биссектрисы же!

Значит \( \left( \triangle AOC \right) \)

Теперь через буквы

Получилось, что угол между биссектрисами двух углов зависит только от третьего угла!

Ну вот, две биссектрисы мы посмотрели. А что, если их три?! Пересекутся ли они все в одной точке?

Источник

Угол. Биссектриса. Виды углов.

теория по математике 📈 планиметрия

Угол – геометрическая фигура, состоящая из точки и двух лучей, которые исходят из этой точки. Лучи – стороны угла, а точка – вершина.

Обозначение углов: можно обозначать тремя заглавными латинскими буквами (в середине записи – буква, которая обозначает вершину угла); можно обозначать одной заглавной латинской буквой; также используется обозначение двумя прописными латинскими буквами.

Рассмотрим обозначение на рисунках, где на рисунке 1 показан угол АОС, на рисунке 2 – угол М, на рисунке 3 – угол (hc).

Рисунок 1Рисунок 2Рисунок 3
Что называется биссектрисой углаЧто называется биссектрисой углаЧто называется биссектрисой угла

Измерение углов. Виды углов

Обычно за единицу измерения углов принимают градус – угол, равный одной стовосьмидесятой части развернутого угла. Эта единица измерения введена до нашей эры много веков назад и используется в наше время.

Число, которое указывает, сколько раз градус и его части укладываются в данном угле, называется градусной мерой угла.

Определенные части градуса носят такие названия, как минута и секунда, где минута – это 1/60 часть угла, а секунда – это 1/60 часть минуты.

Запись и чтение осуществляется следующим образом: 78 0 (78 градусов); 24 0 32 / 45 // — это 24 градуса 32 минуты 45 секунд. Определение

Угол называется развернутым, если обе его стороны лежат на одной прямой.

Также можно сказать, что одна сторона развернутого угла является продолжением другой стороны этого угла. На рисунке показан развернутый угол С. Его величина равна 180 градусам (180 0 ).

Что называется биссектрисой углаОпределение

Угол, градусная мера которого равна 90 градусов, называется – прямой.

Биссектриса угла

Биссектрисой угла называется луч, исходящий из вершины и делящий его на два равных угла. На рисунке показан луч ML, который делит угол KMN пополам, то есть угол KML равен углу LMN.

Что называется биссектрисой угла

Смежные углы

Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными.

На рисунке показаны углы ABD и DBC, которые являются смежными, у них сторона BD общая, а стороны АВ и ВС являются продолжениями одна другой.

Что называется биссектрисой угла

По рисунку мы видим, что эти два смежных угла образуют развернутый угол. Таким образом, сумма смежных углов равна 180 градусов. Это свойство смежных углов.

Смежные углы

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого угла. Другими словами, при пересечении двух прямых образуются две пары вертикальных углов.

На рисунке показаны две пары вертикальных углов, это пара углов 1 и 2, а также вторая пара – это 3 и 4.

Что называется биссектрисой угла

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *