Что называется анизотропией теплового расширения

§ 40. Анизотропия свойств кристаллических тел

Монокристаллы и поликристаллы

1. Следствием упорядоченного внутреннего строения кристаллов является зависимость их свойств от выбранного направления, или анизотропия свойств. Анизотропия присуща лишь монокристаллам, т. е. одиночным кристаллам. Невооружённым глазом можно увидеть, например, монокристаллы поваренной соли, сахарного песка, кварца. Кристаллы, приведённые на рисунке 106, являются монокристаллами.

Чаще твёрдое тело представляет собой множество сросшихся кристаллов. Такое твёрдое кристаллическое тело называют поликристаллом. Примером поликристаллического тела может служить любой металл. Физические свойства поликристалла не зависят от выбранного в нём направления. Говорят, что поликристалл изотропен.

Анизотропия теплового расширения

2. Различие свойств монокристаллов и поликристаллов хорошо проявляется при тепловом расширении. Поликристаллическое тело расширяется по всем направлениям одинаково, поэтому его температурный коэффициент объёмного расширения в 3 раза больше температурного коэффициента линейного расширения.

Монокристаллы обладают анизотропией теплового расширения, т. е. в разных направлениях расширяются по-разному. Если, например, нагревать шар из монокристалла, то он превратится в эллипсоид. В таблице 28 приведены значения температурных коэффициентов линейного расширения α по трём взаимно перпендикулярным направлениям для некоторых кристаллов.

Что называется анизотропией теплового расширения

Как видно из таблицы, коэффициент линейного расширения монокристалла изменяется в зависимости от температуры и выбранного направления. У гипса и у кальцита они по некоторым направлениям принимают даже отрицательные значения. Это означает, что при повышении температуры монокристалл расширяется по одному направлению и сжимается по двум другим.

Источник

Анизотропия

Анизотропи́я (от др.-греч. ἄνισος — неравный и τρόπος — направление) — неодинаковость свойств среды (например, физических: упругости, электропроводности, теплопроводности, показателя преломления, скорости звука или света и др.) по различным направлениям внутри этой среды; в противоположность изотропии.

В отношении одних свойств среда может быть изотропна, а в отношении других — анизотропна; степень анизотропии также может различаться.

Частный случай анизотропии — ортотропия (от др.-греч. ὀρθός — прямой и τρόπος — направление) — неодинаковость свойств среды по взаимно перпендикулярным направлениям.

Содержание

Примеры

Анизотропия является характерным свойством кристаллических тел (точнее — лишь тех, кристаллическая решетка которых не обладает высшей — кубической симметрией). При этом свойство анизотропии в простейшем виде проявляется только у монокристаллов. У поликристаллов анизотропия тела в целом (макроскопически) может не проявляться вследствие беспорядочной ориентировки микрокристаллов, или даже не проявляется, за исключением случаев специальных условий кристаллизации, специальной обработки и т. п.

Причиной анизотропности кристаллов является то, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, поляризуемость или электропроводность) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул. Макроскопически эта неодинаковость проявляется, как правило, лишь если кристаллическая структура не слишком симметрична.

Помимо кристаллов, естественная анизотропия — характерная особенность многих материалов биологического происхождения, например, деревянных брусков.

Анизотропия свойственна жидким кристаллам, движущимся жидкостям (неньютоновским — особенно).

Анизотропией особого рода в масштабах всего кристалла или его областей обладают ферромагнетики и сегнетоэлектрики.

Во многих случаях анизотропия может быть следствием внешнего воздействия (например, механической деформации, воздействия электрического или магнитного поля и т.д.). В ряде случаев анизотропия среды может в какой-то степени (а в некоторой слабой степени — часто) сохраняться после исчезновения вызвавшего ее внешнего воздействия.

Обменная анизотропия

Обменная анизотропия — особенность петель гистерезиса перемагничивания магнитных материалов, проявляющаяся в несимметричном расположении петли относительно оси ординат.

Анизотропия времени

Примечания

См. также

Ссылки

1. Физическая энциклопедия, под ред. Прохорова А.М., 1988, Москва,»Советская энциклопедия», том 1, стр 83

Полезное

Смотреть что такое «Анизотропия» в других словарях:

анизотропия — анизотропия … Орфографический словарь-справочник

Анизотропия — – жбк. неодинаковость свойств (механических) по разным направлениям. [СНиП 2.03.01 84] Анизотропия – неодинаковость физических свойств материала или вещества по различным направлениям. [Терминологический словарь по строительству на 12 … Энциклопедия терминов, определений и пояснений строительных материалов

АНИЗОТРОПИЯ — (от греческого anisos неравный и tropos направление), характеристика физического тела, заключающаяся в том, что различные его свойства (например, механические, электрические, магнитные) в разных направлениях проявляются количественно неодинаково … Современная энциклопедия

Анизотропия — (от греческого anisos неравный и tropos направление), характеристика физического тела, заключающаяся в том, что различные его свойства (например, механические, электрические, магнитные) в разных направлениях проявляются количественно неодинаково … Иллюстрированный энциклопедический словарь

АНИЗОТРОПИЯ — (от греч. anisos неравный и tropos направление) зависимость свойств среды от направления. Анизотропия характерна, напр., для механических, оптических, магнитных, электрических и др. свойств кристаллов … Большой Энциклопедический словарь

Анизотропия — разл. значение физ. свойств г. п. и м лов по разным направлениям; характерна для слоистых г. п., а также для п. с неравномерной структурой, при условии, что чередующиеся слои или зерна м лов имеют разл. физ. свойства. А. м лов обусловливается… … Геологическая энциклопедия

АНИЗОТРОПИЯ — (от греч. anisos неравный и tropos направление), зависимость физ. св в (механич., оптич., магн., электрич. и т. д.) в ва от направления. Естеств. А. характерная особенность кристаллов; напр.. пластинка слюды легко расщепляется на тонкие листочки… … Физическая энциклопедия

анизотропия — Неодинаковость физических свойств материала или вещества по различным направлениям [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] анизотропия Неравномерность плотности материала мембраны в её поверхностном… … Справочник технического переводчика

АНИЗОТРОПИЯ — (от греч. anisos неравный и tropos направление) в ботанике, способность разных органов одного и того же растения принимать разл. положения при одинаковом воздействии факторов внеш. среды. Напр,, при одностороннем освещении растений, верхушки… … Биологический энциклопедический словарь

анизотропия — сущ., кол во синонимов: 3 • анизотропность (1) • макроанизотропия (1) • неод … Словарь синонимов

Анизотропия — Анизотропия: неодинаковость свойств среды по различным направлениям внутри этой среды. Источник: СП 43.13330.2012. Свод правил. Сооружения промышленных предприятий. Актуализированная редакция СНиП 2.09.03 85 (утв. Приказом Минрегиона России от… … Официальная терминология

Источник

Анизотропия кристаллов

Что называется анизотропией теплового расширения Что называется анизотропией теплового расширения Что называется анизотропией теплового расширения Что называется анизотропией теплового расширения

Что называется анизотропией теплового расширения

Что называется анизотропией теплового расширения

Физические свойства твердого тела можно разделить на две категории: одна из них включает такие свойства, как плотность, удельная теплоемкость, которые не связаны с выбором какого-либо направления внутри твердого тела, свойства же другой категории (механические модули, термический коэффициент расширения, коэффициент теплопроводности, удельное сопротивление, показатель преломления и др.) могут быть различными для разных направлений в твердом теле.

Изотропностью называется независимость физических свойств тела от направления внутри него. Если такие физические свойства тела, как модуль упругости, коэффициент теплопроводности, показатель преломления и т. п., одинаковы по всем направлениям, то такое тело будет изотропным.

Под анизотропией понимается зависимость свойств макроскопически однородного тела от направления. Изотропными являются аморфные тела, жидкости и газы. Анизотропия же является характерной особенностью кристаллов. Но обнаружить анизотропность можно не у всяких кристаллических тел, а только у монокристаллов. Большинство окружающих нас кристаллических тел, например, металлы, являются поликристаллическими, т. е. они состоят из очень большого числа сросшихся друг с другом мелких кристаллических зерен, ориентированных различным образом. Если в ориентации этих мелких кристалликов нет какого-либо определенного порядка, то данное поликристаллическое тело будет изотропно. Если же в ориентации кристаллических зерен наблюдается упорядоченность (а она может возникнуть при таких методах обработки металлов, как прокатка, протяжка, волочение), то материал называется текстурированным и обнаруживает некоторую анизотропность.

В обычных поликристаллических металлах кристаллические зерна настолько малы, что, как правило, различимы лишь при наблюдении в микроскоп. Но при медленном охлаждении расплава металла можно получить крупнозернистый слиток, в котором кристаллические зерна легко рассмотреть невооруженным глазом. Если же применить особую методику охлаждения расплава металла, то можно получить такие образцы, в которых будет находиться всего одно кристаллическое зерно – один кристалл. Такие однокристальные образцы называются монокристаллами.

В природе встречаются довольно большие монокристаллы минералов, а иногда и металлов (самородки золота). Можно получить монокристаллы многих веществ (в том числе и металлов) искусственно. Для этого приходится соблюдать иногда очень тонкую и достаточно сложную технологию.

Наглядным примером анизотропии механической прочности кристалла является способность кристаллов слюды легко расщепляться на тонкие листочки по определенному направлению и обладать достаточной прочностью в перпендикулярном направлении. Монокристаллы некоторых металлов (цинка, висмута, сурьмы) тоже довольно легко скалываются по определенным плоскостям. Плоскость скола при этом представляет собой хорошее зеркало.

Исследования показали, что кристаллы могут обладать анизотропией теплопроводности, электропроводности, магнитных свойств и пр.

Анизотропия проявляется и в поверхностных свойствах кристаллов. Например, коэффициент поверхностного натяжения для разнородных граней кристалла имеет различную величину. При росте кристалла из расплава или раствора это является причиной различия скоростей роста разных граней.

Анизотропия скоростей роста обусловливает правильную форму растущего кристалла. Анизотропия поверхностных свойств проявляется в различии скоростей растворения разных граней кристалла, адсорбционной способности, химической активности разных граней одного и того же кристалла.

Причина анизотропии состоит в том, что кристаллы имеют строго упорядоченное строение. Важнейшим следствием упорядоченной структуры является анизотропия физических свойств кристалла.

Поясним сказанное. На рисунке 2.9 изображена схема расположения атомов в кристалле. Плоскость рисунка совпадает с одной из плоскостей, проходящей через узлы кристаллической решетки. Можно сказать, что кристалл представляет собой пачку таких плоскостей, лежащих как листы бумаги в книге.

Что называется анизотропией теплового расширения

Что называется анизотропией теплового расширения

Если произвести сечение такого кристалла плоскостями, перпендикулярными плоскости чертежа, то в зависимости от ориентации плоскостей сечения густота расположения атомов на них будет различной. На рисунке 2.9 направления секущих плоскостей изображены сплошными линиями. Из рисунка хорошо видно, что плотность «населения» плоскостей атомами различна; если расположить эти плоскости в порядке убывания поверхностной плотности атомов, то получится следующий ряд:

(010) (100) (110) (120) (320).

Вместе с тем, видно, что расстояния между смежными секущими плоскостями тем больше, чем плотнее «населенность» их атомами. Легко представить себе, что в наиболее плотно заполненных плоскостях атомы прочнее связаны друг с другом, так как расстояния между ними меньше.

С другой стороны, наиболее плотно заполненные плоскости, будучи удаленными друг от друга на относительно большие расстояния, чем мало заселенные плоскости, будут слабее связаны друг с другом. Следовательно, наш условный кристалл обладает анизотропией механической прочности: легче всего его расколоть по плоскости (010).

На основании изложенного можно сделать обобщение, что и другие физические свойства кристалла (тепловые, электрические, магнитные, оптические) могут быть различными по разным направлениям.

Численные значения некоторых физических свойств кристаллов для разных направлений могут иногда различаться на несколько порядков. У кристаллов графита, например, удельное электрическое сопротивление по направлению [001] почти в сто раз больше, чем по перпендикулярному направлению.

Один и тот же кристалл может быть изотропным в отношении одного свойства и анизотропным в отношении другого. Например, кристалл поваренной соли изотропен относительно диэлектрической проницаемости, коэффициента теплового расширения, показателя преломления, но анизотропен в отношении механических свойств и в отношении скоростей роста и растворения граней.

Анизотропия физических свойств кристаллов используется в технике, базирующейся на применении монокристаллов (полупроводниковая электроника, электро- и радиотехника, кристаллооптика и др.). Монокристаллические элементы полупроводниковых приборов, стабилизаторов частоты, пьезодатчиков, оптических приборов изготовляются со строгим учетом кристаллографического направления. Для этих целей нужно изготовить монокристаллический образец не только определенной чистоты, формы и размеров, но и с нужной ориентацией кристаллографических осей.

Источник

Анизотропные материалы

Смотреть что такое «Анизотропные материалы» в других словарях:

АНИЗОТРОПНЫЕ МАТЕРИАЛЫ — материалы, св ва к рых неодинаковы по разл. направлениям; напр., монокристаллы, волокнистые и плёночные материалы, железобетон, пластмассы со слоистыми наполнителями (гетинакс, текстолиты, стеклопластики, углепластики и др.), композиц. материалы … Большой энциклопедический политехнический словарь

АНИЗОТРОПНЫЕ МАТЕРИАЛЫ — материалы, свойства которых неодинаковы по различным направлениям; например, монокристаллы, волокнистые и пленочные материалы, пластмассы и др. Большинство материалов, используемых в литейном производстве, являются анизотропными материалами:… … Металлургический словарь

Материалы анизотропные — – материалы, свойства которых неодинаковы. К ним относятся монокристаллы, волокнистые и пленочные материалы, железобетон, пластмассы со слоистыми наполнителями (гетинакс, текстолиты, стеклопласты, пьезокварц, графит, композиционные материалы).… … Энциклопедия терминов, определений и пояснений строительных материалов

Строительные материалы — Термины рубрики: Строительные материалы Ceresit cx Conlit Nordic green plus Thermasheet Армоцемент или сталефибробетон композиционный Белая сажа … Энциклопедия терминов, определений и пояснений строительных материалов

СОТОПЛАСТЫ — материалы, конструкция к рых представляет собой закономерно чередующиеся ячейки (соты) определенной формы (рис. 1); наиб. распространена шестигранная форма. Рис. 1. Формы ячеек сотопласгов: а шестигранная; б шестигранная усиленная; в… … Химическая энциклопедия

Анизотропия — [anisotropy] различие физических (тепловых, электрических, магнитных, оптических) и механических (твердости, прочности, вязкости, упругости) свойств вещества в зависимости от направления (противоположность изотропии). Анизотропные материалы:… … Энциклопедический словарь по металлургии

АНИЗОТРОПИЯ — [anisotropy] – различие физических (тепловых, электрических, магнитных, оптических) и механических (твердости, прочности, вязкости, упругости) свойств материала в зависимости от направления (противоположность изотропии). Анизотропные… … Металлургический словарь

Буров Андрей Константинович — [2(15).10.1900, Москва,≈ 7.5.1957, там же], советский архитектор, учёный, изобретатель. Доктор технических наук (1952). Учился в московском ВХУТЕМАСе (1918≈25) у братьев Весниных. Изучал архитектуру в США (Детройт, 1931) и в Европе (Италия,… … Большая советская энциклопедия

Буров — Андрей Константинович [2(15).10.1900, Москва, 7.5.1957, там же], советский архитектор, учёный, изобретатель. Доктор технических наук (1952). Учился в московском ВХУТЕМАСе (1918 25) у братьев Весниных. Изучал архитектуру в США (Детройт,… … Большая советская энциклопедия

Буров, Андрей Константинович — У этого термина существуют и другие значения, см. Буров. Буров, Андрей Константинович Основные сведения … Википедия

Источник

АНИЗОТРОПИЯ ЭЛЕКТРИЧЕСКАЯ

Смотреть что такое «АНИЗОТРОПИЯ ЭЛЕКТРИЧЕСКАЯ» в других словарях:

Анизотропия — разл. значение физ. свойств г. п. и м лов по разным направлениям; характерна для слоистых г. п., а также для п. с неравномерной структурой, при условии, что чередующиеся слои или зерна м лов имеют разл. физ. свойства. А. м лов обусловливается… … Геологическая энциклопедия

электрическая анизотропия — elektrinė anizotropija statusas T sritis automatika atitikmenys: angl. electric anisotropy vok. elektrische Anisotropie, f rus. электрическая анизотропия, f pranc. anisotropie électrique, f … Automatikos terminų žodynas

электрическая анизотропия — elektrinė anizotropija statusas T sritis fizika atitikmenys: angl. electric anisotropy vok. elektrische Anisotropie, f rus. электрическая анизотропия, f pranc. anisotropie électrique, f … Fizikos terminų žodynas

СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ ПОПЕРЕЧНОЕ — сопротивление анизотропных г. п. (см. Анизотропия электрическая) прохождению электрического тока вкрест напластованию. В электроразведке С. э, п. часто определяется как электрическое сопротивление параллелепипеда с основанием в 1 м2 и высотой h,… … Геологическая энциклопедия

Магнетизм — Классическая электродинамика … Википедия

Диэлектрики — вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… … Большая советская энциклопедия

Твёрдое тело — одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости (См. Жидкость), Газов, плазмы (См. Плазма)) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около… … Большая советская энциклопедия

Металлы — простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны… … Большая советская энциклопедия

Микроскоп (оптич. прибор) — Микроскоп (от микро. и греч. skopéo смотрю), оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную оптическую… … Большая советская энциклопедия

Микроскоп — I Микроскоп (от Микро. и греч. skopéo смотрю) оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную… … Большая советская энциклопедия

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *