Что называется акустическим спектром сложного тона
Природа звука и его физические характеристики
Акустика
Акустика — область физики, исследующая упругие колебания и волны от самых низких частот до предельно высоких (
Звуковые колебания и волны — частный случай механических колебаний и волн. Однако в связи с важностью акустических понятий для оценки слуховых ощущений, а также и в связи с медицинскими приложениями, целесообразно некоторые вопросы разобрать специально.
Принято различать следующие звуки: 1) тоны, или музыкальные звуки; 2) шумы; 3) звуковые удары.
Тоном называется звук, являющийся периодическим процессом. Если этот процесс гармонический, то тон называется простым или чистым,а соответствующая плоская звуковая волна описывается уравнением (5.48). Основной физической характеристикой чистого тона является частота. Ангармоническому (негармоническому) колебанию соответствует сложный тон. Простой тон издает, например, камертон, сложный тон создается музыкальными инструментами, аппаратом речи (гласные звуки) и т. п.
Сложный тон может быть разложен на простые. Наименьшая частота n0 такого разложения соответствует основному тону, остальные гармоники (обертоны) имеют частоты, равные 2n0, 3n0 и т. д. Набор частот с указанием их относительной интенсивности (или амплитуды А) называется акустическим спектром (см. § 5.4). Спектр сложного тона линейчатый; на рис. 6.1 показаны акустические спектры одной и той же ноты (n0 = 100 Гц), взятой на рояле (а) и кларнете (б). Таким образом, акустический спектр — важная физическая характеристика сложного тона.
Шумом называют звук, отличающийся сложной неповторяющейся временной зависимостью.
К шуму относятся звуки от вибрации машин, аплодисменты, шум пламени горелки, шорох, скрип, согласные звуки речи и т. п.
Шум можно рассматривать как сочетание беспорядочно изменяющихся сложных тонов. Если попытаться с некоторой степенью условности разложить шум в спектр, то окажется, что этот спектр будет сплошным, например спектр, полученный от шума горения бунзеновской газовой горелки (рис. 6.2).
Энергетической характеристикой звука как механической волны является интенсивность (см. § 5.8).
На практике для оценки звука удобнее использовать не интенсивность, а звуковое давление, дополнительно возникающее при прохождении звуковых волн в жидкой или газообразной среде. Для плоской волны интенсивность связана со звуковым давлением р зависимостью
где r — плотность среды, с — скорость звука.
а для звукового давления
При использовании децибел соответственно имеем
Измерение звукового давления в газах производится измерительным микрофоном, который состоит из датчика, преобразующего акустическую величину в электрический сигнал, электронного усилителя и электрического измерительного прибора (рис. 6.3). Эта схема является частным случаем общей структурной схемы (см. § 17.1).
Акустический спектр
Сложный тон можно представить в виде суммы, простых тонов с кратными частотами и различными амплитудами. Такое представление называете?! разложением на составляющие тона. Тон наименьшей частоты называется основным, а остальные тона называют обертонами, или гармониками. Обертоны имеют частоты, кратные частоте основного тона. Такое разложение однозначно описывается указанием частот всех составляющих тонов и их амплитуд.
Акустический спектр сложного тона — это набор частот с указанием их относительной интенсивности (амплитуды).
а) Высота, тембр, громкость звука. Воспринимая звуки, чело
век различает их по высоте, тембру и громкости.
Высота тона обусловлена прежде всего частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности волны (звук большей интенсивности воспринимается более низким).
Тембр звука определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру даже в том случае, когда основной тон у них одинаков.
Громкость звука — это субъективная оценка уровня его интенсивности.
б) Закон Вебера—Фехнера, шкала громкости. Использование
логарифмической шкалы для оценки уровня интенсивности звука
хорошо согласуется с психофизическим законом ВЕБЕРА—ФЕХ
НЕРА.
Если увеличивать раздражение в геометрической прогрессии (т. е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т. е. на одинаковую величину).
На первый взгляд кажется, что громкость звука следует измерять в белах или децибелах. Действительно, при таком подходе увеличение интенсивности (раздражителя) в 10 раз вызовет увеличение громкости (ощущения звукового раздражения) на 1 Б. Однако субъективное восприятие интенсивности звука связано не только с уровнем интенсивности, но и с частотой звука. Так, например, ухо человека не воспринимает ультразвук даже при большом уровне интенсивности. По этой причине при построении шкалы громкости следует учитывать восприимчивость уха «среднего» человека к различным частотам.
Поступают следующим образом.
1. Для звука с частотой 1 кГц вводят единицу уровня громкости — фон, которая соответствует уровню интенсивности 1 дБ.
2. Для других частот уровень громкости также выражают в фонах по следующему правилу.
Громкость звука — это число, которое показывает уровень интенсивности звука (дБ) с частотой 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, какое вызывает данный звук.
Уровень громкости обозначают буквой Е, например, Е = 30 фон. Ниже приводится пример зависимости уровня громкости от частоты.
Эти кривые дают зависимость уровня интенсивности / от частоты п звука при постоянном уровне громкости.
Верхняя кривая показывает верхний предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е = 130 фон).
Каждая кривая соответствует одинаковой громкости, но разной интенсивности для разных частот. По отдельной кривой равной громкости можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости.
Информативной для медиков кривой является нижняя кривая, соответствующая порогу слышимости. Она дает зависимость пороговой интенсивности /0 от частоты: /0 = /(v).
У человека с нормальным слухом колебания с частотой ниже 16 Гц или выше 20000 Гц слухового ощущения не вызывают. При увеличении частоты, начиная с 16 Гц, чувствительность уха растет и порог слышимости снижается, в области частот 1000—5000 Гц чувствительность наибольшая, т. е. порог минимален. При дальнейшем увеличении частоты чувствительность падает до нуля при 20000 Гц.
Для измерения уровня громкости применяется прибор — шумо-мер. Шумомер снабжен микрофоном, который превращает акустический сигнал в электрический. Уровень громкости (дБ) регистрируется стрелочным измерительным прибором.
Дата добавления: 2015-07-24 ; просмотров: 2337 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Теория вопроса и метод выполнения работы
Лабораторная работа № 9
СНЯТИЕ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКИ УХА НА ПОРОГЕ
СЛЫШИМОСТИ
Цель работы:
1. Ознакомиться с работой аудиометра.
2. Освоить метод определения порога слышимости с помощью аудиометра.
3. Построить аудиограмму воздушной проводимости для левого и для правого уха.
Оборудование: наушники, аудиометр.
Теория вопроса и метод выполнения работы
Звук представляет собой колебания с частотой от 16 Гц до 20 кГц, распространяющиеся в упругой среде. Источником звука может быть колеблющееся тело, частота колебаний которого лежит в диапазоне звуковых частот (камертон, звонок, струна и т. п.).
Звуки делятся на тоны, шумы и звуковые удары. Различают простые и сложные тоны. Простой тон – это звуковое колебание, происходящее по гармоническому закону. Основной его характеристикой является частота. Если тон представляет собой негармоническое колебание, то он называется сложным. Простой тон дает камертон, сложный – музыкальные инструменты или голосовой аппарат. Сложный тон можно разложить на простые, при этом тон наименьшей частоты называется основным, а остальные – обертонами. Набор частот с указанием их интенсивности называется акустическим спектром сложного тона. Спектр сложного тона – линейчатый (рис. 1).
Рис. 1. Линейчатый спектр сложного тона Рис. 2. Сплошной спектр шума
Для оценки интенсивности звука применяют логарифмическую шкалу –
шкалу уровней интенсивности. Уровень интенсивности:
(Б) (1.1)
(дБ) (1.2)
Уровень интенсивности выражают в белах (Б) или децибелах (дБ). За 1 Б принимают уровень интенсивности звука, интенсивность которого в 10 раз больше .
Субъективной физиологической характеристикой звука является громкость ,которая характеризует уровень слухового ощущения. В основе измерения громкости лежит психофизический закон Вебера – Фехнера. Согласно этому закону, при увеличении раздражения в геометрической прогрессии ощущение этого раздражения возрастает в арифметической прогрессии. Из этого закона следует, что громкость звука пропорциональна логарифму отношения интенсивностей звуков:
(фон) (1.3)
где – некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности.
Громкость выражают в фонах (фон). Принято считать, что на частоте 1 кГц шкалы громкости и уровня интенсивности совпадают.
В этом случае и 1 фон соответствует 1 дБ.
Громкость на других частотах измеряют сравнением исследуемой громкости звука с громкостью звука частотой 1 кГц.
Для нахождения соответствия между громкостью и интенсивностью звука на разных частотах используют кривые равной громкости (рис. 3).
Рис. 3. Кривые равномерной громкости
Метод измерения остроты слуха называют аудиометрией. При аудиометрии на приборе (аудиометре) определяют порог восприятия на разных частотах:
(дБ) (1.4)
где – пороговая интенсивность звука, которая приводит к возникновению слухового ощущения у испытуемого.
Полученная зависимость порога восприятия от частоты тона называется спектральной характеристикой уха на пороге слышимости или аудиограммой. При проведении аудиометрии отсчет порога восприятия ведется от нулевого уровня, который соответствует среднему порогу слышимости для молодых людей с нормальным слухом. Изменение порога восприятия по сравнению с нулевым уровнем указывает на отклонение слуха у испытуемого от среднестатистической нормы. Отклонения порога восприятия от нулевого уровня на ± 10 дБ считаются лежащими в пределах нормы.
В медицинской практике принято при построении аудиограмм ось направлять вниз (рис. 4), в этом случае отклонение кривых (● – левое ухо, × – правое ухо) от нулевого уровня наглядно характеризует снижение слуха у испытуемого. На рисунке 4 в качестве примера изображены аудиограммы человека, у которого наблюдается снижение слуха для правого уха на 40-60 дБ по сравнению с нормой, а левое ухо соответствует норме.
Рис. 4. Аудиограмма левого (верхняя кривая) и правого (нижняя кривая) уха
Биомеханика
Назва | Биомеханика |
Сторінка | 44/77 |
Дата конвертації | 20.08.2014 |
Розмір | 7.59 Mb. |
Тип | Учебник |
mir.zavantag.com > Спорт > Учебник
12.5. Акустические воздействия
Под акустическими воздействиями чаще подразумевают воздействия механических волн.
Частота волны
При распространении волны частицы среды вовлекаются в колебательное движение. Частота этих колебаний называется частотой волны. Механические волны разделены на следующие частотные диапазоны, указанные в табл. 12.10.
Шкала механических волн