Что называется активным сопротивлением цепи переменного тока
Что такое активное сопротивление
При прохождении тока в электрической цепи он подвергается противодействию ее отдельных частей, которое в электротехнике называется сопротивлением. Это приводит к потере части мощности. Чтобы правильно рассчитать параметры электрической цепи, нужно учитывать природу сопротивления и знать, в чем заключается действие различных его видов.
Что такое сопротивление
Ток, протекая через провода и различные радиодетали, тратит свою энергию. Это явление количественно выражается величиной сопротивления. В электротехнике его разделяют на активное и реактивное сопротивление. В первом случае при прохождении тока часть его энергии превращается в тепловой вид, а иногда и в другие (например, проявляется в химических реакциях). Величина активного сопротивления зависит от частоты переменного электротока и возрастает с ее увеличением.
Второй тип сопротивления имеет более сложную природу и возникает в момент включения или выключения потребителя электроэнергии в сеть переменного или постоянного тока. В цепи с реактивным сопротивлением энергия электрического тока частично превращается в другую форму, а затем переходит обратно, то есть, наблюдается периодический колебательный процесс. Полное сопротивление цепи включает в себя активный и реактивный типы, которые учитываются по особым правилам.
Виды сопротивления
В электротехнике рассматривается активное электрическое сопротивление, а также две разновидности реактивного: индуктивное и ёмкостное.
Активное сопротивление
Можно представить себе электрическую цепь, в которой к клеммам батарейки через провод последовательно присоединены резистор и электрическая лампочка. Если замкнуть провода, лампочка загорится. Можно использовать вольтметр или мультиметр в соответствующем режиме работы, с помощью которых измеряется разность потенциалов между двумя точками цепи.
Измерив напряжение между клеммами и сравнив его с тем, которое имеется на проводах подсоединённых к лампочке, можно увидеть, что последнее меньше. Это связано с падением напряжения на впаянной в цепь радиодетали. Последняя оказывает противодействие электрическому току, затрудняя его прохождение.
Активным сопротивлением обладает каждая деталь, через которую проходит ток. У металлических проводов оно очень маленькое. Чтобы узнать величину сопротивления радиодетали, нужно изучить обозначение на ее корпусе. Если из рассматриваемой электроцепи убрать резистор, то сила тока, проходящего через лампочку, увеличится.
Формула для расчета активного сопротивления соответствует закону Ома:
Для расчета активного сопротивления проводника формула будет другая:
где K-коэффициент поверхностного эффекта, который равен 1,
Сопротивление принято измерять в Омах. Оно существенно зависит от формы и размеров объекта, через который протекает ток: сечения, длины, материала, а также от температуры. Действие активного сопротивления уменьшает энергию электрического тока, превращая её в другие формы (преимущественно в тепловую).
Реактивное сопротивление
Этот вид возникает тогда, когда переменный ток проходит сквозь элемент, который обладает индуктивностью или емкостью. Основной особенностью реактивного сопротивления является преобразование электрической энергии в другую форму в прямом и обратном направлениях. Часто это происходит циклически. Реактивное сопротивление проявляется только при изменениях силы тока и напряжения. Существует два его вида: индуктивное и емкостное.
Индуктивное сопротивление
При увеличении силы тока порождается магнитное поле, обладающее различными характеристиками. Наиболее важной из них является индуктивность. Магнитное поле, в свою очередь, воздействует на проводник, по которому протекает ток. Влияние является противоположным направлению изменения тока. То есть, если сила тока увеличилась, то магнитное поле будет уменьшать его, и наоборот, если снизилась, то поле усилит его. Когда ток не меняется, реактивное сопротивление катушки индуктивности будет равно нулю.
Индуктивное сопротивление зависит от частоты тока. Чем она выше, тем выше скорость изменения данного параметра. Это значит, что будет образовано более сильное магнитное поле. Возникающая при этом ЭДС препятствует изменению электрического тока.
Расчет реактивного индуктивного сопротивления осуществляется по такой формуле:
XL = L×w = L×2π×f, где буквами обозначаются:
При синусоидальном изменении напряжения сила тока будет меняться, отставая от него по фазе. Поэтому реактивное сопротивление трансформатора существенно зависит от его индуктивности.
Емкостное сопротивление
Оно имеет иную природу, чем индуктивное. Это понятие удобно проиллюстрировать на примере электрической цепи, состоящей из источника питания, клеммы которого соединены с обкладками конденсатора. Сразу после подключения на них будет постепенно накапливаться заряд, создавая ток в цепи.
После достижения предельной величины, которая определяется ёмкостью детали, ток не будет проходить по цепи. Если после этого отключить провода от клемм, а затем последние соединить, то между ними начнётся перемещение зарядов до тех пор, пока разность потенциалов станет равной нулю.
Если к конденсатору подключить источник переменного тока, то будет происходить следующее. С увеличением разности потенциалов заряд на обкладках конденсатора будет расти. Когда напряжение перейдёт в фазу уменьшения, накопленный заряд начнёт стекать с них, образуя ток противоположного направления. Затем разность потенциалов станет отрицательной, но по абсолютной величине будет расти до максимального значения. При этом конденсатор начнет вновь заряжаться, но при этом знак поступающих зарядов будет не такой, который был раньше.
Когда напряжение начнёт увеличиваться (уменьшаясь по абсолютной величине), заряд с обкладок конденсатора будет стекать. Когда разность потенциалов у источника достигнет нуля и продолжит увеличиваться, начнётся новый цикл изменений.
На каждом этапе описанной ситуации ток с обкладок конденсатора будет иметь направление противоположное тому, которое порождается переменной разностью потенциалов источника питания.
Происходящее таким образом уменьшение силы тока представляет собой физический смысл ёмкостного сопротивления. Оно обозначается буквами ХС и рассчитывается по формуле:
XС = 1/(w×C) = 1/(2π×f×C), где
В рассматриваемом случае изменения тока отстают от напряжения.
Полное сопротивление
При использовании нескольких разновидностей важно знать, как они сочетаются между собой. Активное сопротивление присутствует в любых схемах. Оно способствует превращению части электрической энергии в нагрев. Реактивное сопротивление возникает лишь в цепи переменного тока. Чтобы определить его величину, необходимо из индуктивного вычесть ёмкостное. Эта характеристика показывает энергию, которая пульсирует в цепи, переходя из одной формы в другую.
Полное сопротивление представляет собой сумму активного и реактивного сопротивления в цепи переменного тока, но такое сложение необходимо выполнять особым образом. Для этого нужно начертить прямоугольный треугольник, катеты в котором должны иметь длину, равную величине активного и реактивного сопротивлений соответственно.
Длина гипотенузы будет численно выражать полное сопротивление электрической цепи. Для его определения используется правило, говорящее о том, что сумма квадратов катетов равна квадрату гипотенузы. Это правило называют теоремой Пифагора. Следовательно, формула, с помощью которой можно найти полное сопротивление, выглядит так:
Следовательно, при расчёте полного сопротивления или импеданса нужно учитывать, что такое ёмкость и индуктивность и как они могут проявляться в электрических схемах. Эти величины называются еще паразитными, так как они могут отрицательно влиять на работу электроприбора. Их возникновение относят к непредсказуемым факторам. При этом емкостным или индуктивным сопротивлением, имеющим небольшое значение, при выполнении расчетов можно пренебречь.
Заключение
Как видим, при расчете электрической цепи необходимо учитывать и активное, и реактивное, и полное сопротивление. Они отличаются друг от друга не только названием. Физика этих сопротивлений также разная. Если под воздействием активного сопротивления электроэнергия превращается в другой вид и поступает в окружающую среду, то реактивное возвращает ее обратно в сеть. Без понятия о сопротивлении и знания формул расчета невозможно конструировать электросхемы.
Видео по теме
Активное сопротивление цепи переменного тока
Активным или ваттным сопротивлением называется всякое сопротивление, поглощающее электрическую энергию или вернее превращающее ее в другой вид энергии, например в тепловую, световую или химическую.
Потери энергии, а, следовательно, и активное сопротивление в электрической цепи при переменном токе всегда больше потерь энергии в этой же цепи при постоянном токе. Причина этого заключается в том, что в цепях переменного тока потери энергии обусловлены не только обычным омическим сопротивлением проводников, но и многими другими причинами.
Рассмотрим некоторые из этих.
Так, например, наличие конденсатора в цепи переменного тока связано с дополнительными потерями энергии в результате периодического (с частотой переменного тока) изменения поляризации диэлектрика или, попросту говоря, в результате непрерывного переворачивания взад и вперед молекулярных парных зарядов. При этом происходит нагревание диэлектрика, т. е. электрическая энергия превращается в тепловую. Эти потери энергии называются диэлектрическими потерями.
Кроме диэлектрических потерь, как уже говорилось раньше, происходят потери энергии из-за утечки тока вследствие несовершенства изоляции между пластинами конденсаторов. Эти потери называются потерями утечки.
Вокруг всякого переменного тока существует переменное магнитное поле. Следовательно, во всех окружающих железных предметах происходит непрерывное переворачивание молекулярных магнитиков в такт с частотой переменного тока. В результате железные предметы, находящиеся в поле переменного тока, нагреваются, т. е электрическая энергия превращается в тепловую. Эти потери называются потерями на гистерезис.
Благодаря электромагнитной индукции переменный электрический ток наводит в близлежащих замкнутых электрических цепях индукционные токи, что связано с нагреванием этих цепей, т. е. с дополнительными потерями энергии.
Кроме того, такие же индукционные круговые токи возникают не только в замкнутых электрических цепях, но и в близлежащих металлических предметах и нагревают их. Эти токи называются токами Фуко. Возникновение токов Фуко также сопряжено с потерями электрической энергии.
Токи Фуко не всегда являются вредными. Например, на принципе токов Фуко основана защита радиоприборов медными или алюминиевыми экранами от переменных магнитных полей высокой частоты.
Наконец, при очень высоких частотах цепь переменного тока может излучать электромагнитные волны (радиоволны), что связано с потерями на излучение.
Наличие всех этих потерь увеличивает активное сопротивление цепи переменному току.
Опыт показывает, что при высоких частотах и омическое сопротивление проводника оказывается значительно большим, чем при постоянном токе.
Для объяснения этого явления увеличим мысленно сечение проводника (рис. 1) и посмотрим, что происходит в нем при прохождении по нему переменного тока. Вдоль проводника взад и вперед с частотой переменного тока движется огромное количество электронов.
Рисунок 1. Поверхностный эффект, как фактрор увеличения активного сопротивления в цепи переменного тока. Ток вытесняется магнитным полем на поверхность проводника (а), поэтому у поверхности проводника плотность тока больше, чем внутри проводника (б).
До сих пор нам было известно, что движущийся по проводнику переменный поток электронов создает вокруг него переменное магнитное поле. Теперь же, когда мы заглянем внутрь проводника, мы увидим, что магнитное поле имеется и внутри проводника. Это вызвано тем, что каждый электрон при движении создает вокруг себя магнитное поле, а так как часть электронов движется вблизи оси проводника, то они создают магнитное поле не только во вне, но и внутри проводника.
Продолжая присматриваться к происходящему внутри проводника, мы заметим, что наиболее быстро движутся электроны, находящиеся у поверхности проводника, а по мере приближения к середине проводника амплитуда (размах) колебаний электронов становится все меньше и меньше.
Почему же электроны колеблются с различными амплитудами в разных точках сечения проводника?
Это явление также имеет свое объяснение. Вспомним, что при всяком изменении скорости движения электрона на него действует ЭДС самоиндукции, противодействующая этому изменению. Вспомним также, что ЭДС самоиндукции зависит от числа магнитных силовых линий вокруг движущегося электрона. Чем большим числом магнитных силовых линий охватывается электрон, тем труднее ему совершать колебательное движение.
Теперь становится ясным, почему электроны, находящиеся у поверхности проводника, колеблются с большой амплитудой, а электроны, находящиеся глубоко внутри проводника, — с малой. Ведь первые охватываются только теми магнитными силовыми линиями, которые расположены вне проводника, а вторые охватываются и внешними и внутренними магнитными силовыми линиями.
Таким образом, плотность переменного тока получается большей у поверхности проводника и меньшей внутри его.
На рис. 1,б плотность тока характеризуется количеством красных точек. Как видим, наибольшая плотность тока получается около самой поверхности проводника.
При очень высоких частотах противодействие ЭДС самоиндукции внутри проводника становится настолько сильным, что все электроны движутся только по поверхности проводника. Это явление и называется поверхностным эффектом. Так как активное сопротивление проводника зависит от его сечения, а полезным сечением при токе высокой частоты оказывается только тонкий наружный слой проводника, то вполне понятно, что его активное сопротивление увеличивается с повышением частоты переменного тока.
Для уменьшения поверхностного эффекта проводники, по которым протекают токи высокой частоты, делают трубчатыми и покрывают их слоем хорошо проводящего металла, например серебра.
В целях борьбы с явлением поверхностного эффекта применяют также провода специальной конструкции, так называемый литцендрат.
Такой проводник свивают из отдельных тонких медных жилок, имеющих эмалевую изоляцию, причем скрутка жилок производится таким образом, чтобы каждая из них проходила поочередно то внутри проводника, то снаружи его.
Явление поверхностного эффекта особенно сильно сказывается в железных проводах, в которых вследствие большой магнитной проницаемости железа внутренний магнитный поток оказывается особенно большим и поэтому явление поверхностного эффекта становится очень заметным даже при сравнительно низких (звуковых) частотах.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Активное сопротивление в цепи переменного тока
Электрические лампы накаливания, печи сопротивления, бытовые нагревательные приборы, реостаты и другие приемники, где электрическая энергия преобразуется в тепловую, на схемах замещения обычно представлены только сопротивлением R.
Для схемы, изображенной на рис. 13.1, а, заданы сопротивление R и напряжение, изменяющееся по закону
u = Umsinωt
Найдём ток и мощность в цепи.
Ток в цепи переменного тока с активным сопротивлением.
По закону Ома найдем выражение для мгновенного тока:
где Im = Um/R — амплитуда тока
Из уравнений напряжения и тока видно, что начальные фазы обеих кривых одинаковы, т. е. напряжение и ток в цепи с сопротивлением R совпадают по фазе. Это показано на графиках и векторной диаграмме (рис. 13.1, б, б).
Действующий ток найдем, разделив амплитуду на √ 2:
Формулы (13.1) выражают закон Ома для цепи переменного тока с сопротивлением R. Внешне они ничем не отличаются от формулы для цепи постоянного тока, если переменные напряжение и ток выражены действующими величинами.
Мгновенная мощность в цепи переменного тока с активным сопротивлением.
При переменных величинах напряжения и тока скорость преобразования электрической энергии в приемнике, т. е. его мощность, тоже изменяется. Мгновенная мощность равна произведению мгновенных величин напряжения и тока: p = Umsinωt * Imsinωt = UmImsin 2 ωt
Из тригонометрии найдём
Более наглядное представление о характере изменения мощности в цепи дает график в прямоугольной системе координат, который строится после умножения ординат кривых напряжения и тока, соответствующих ряду значений их общего аргумента — времени t. Зависимость мощности от времени — периодическая кривая (рис. 13.2). Если ось времени t поднять по чертежу на величину р = Pm√2 = UmIm√2, то относительно новой оси t’ график мощности является синусоидой с двойной частотой и начальной фазой 90°:
Таким образом, в первоначальной системе координат мгновенная, мощность равна сумме постоянной величины Р = UmIm√2 и перемен- ной р’:
р = Р + р’
Анализируя график мгновенной мощности, нетрудно заметить, что мощность в течение периода остается положительной, хотя ток и напряжение меняют свой знак. Это получается благодаря совпадению по фазе напряжения и тока.
Постоянство знака мощности говорит о том, что направление потока электрической энергии остается в течение периода неизменным, в данном случае от сети (от источника энергии) в приемник с сопротивлением R, где электрическая энергия необратимо преобразуется в другой вид энергии. В этом случае электрическая энергия называется активной.
Если R — сопротивление проводника, то в соответствии с законом Ленца — Джоуля электрическая энергия в нем преобразуется в тепло.
Активная мощность для цепи переменного тока с активным сопротивлением
Скорость преобразования электрической энергии в другой вид энергии за конечный промежуток времени, значительно больший периода изменения тока, характеризуется средней мощностью. Она равна средней мощности за период, которую называют активной.
Активная мощность — среднее арифметическое мгновенной мощности за период.
Для рассматриваемой цепи активную мощность Р нетрудно определить из графика рис. 13.2. Средняя величина мощности равна высоте прямоугольника с основанием Т, равновеликого площади, ограниченной кривой р(t) и осью абсцисс (на рисунке заштриховано).
Равенство площадей РТ = Sp выполняется, если высоту прямоугольника взять равной половине наибольшей мгновенной мощности Pm.
P = UI
Активная мощность для данной цепи равна произведению действующих величин тока и напряжения:
P = UI = I 2 R
С математической точки зрения активная мощность является постоянной составляющей в уравнении мгновенной мощности p(t) [см. выражение (13.2)].
Среднюю мощность за период можно найти интегрированием уравнения (13.2) в пределах периода:
Сопротивление R, определяемое из формулы (13.3) отношением активной мощности цепи к квадрату действующего тока, называется активным электрическим сопротивлением.
Что такое активное сопротивление в цепи переменного тока
Переменный ток — основной источник бытового и промышленного электроснабжения. При подаче напряжения на потребителях возникает сопротивление. Статья даст подробное разъяснение, что такое активное сопротивление в цепи переменного тока.
Дополнительно будет дана формула расчета этого значения, описаны разновидности, условия для идеальной цепи и основные факторы, влияющие на увеличение этих значений.
Переменный ток
Для того чтобы понять, что такое активное сопротивление, необходимо разобраться в самом явлении переменного тока. Переменным является такой тип тока, который непрерывно изменяет направление своего протекания. Во время протекания потенциалы переменного тока постоянно изменяются. Это происходит благодаря работе генератора, а точнее за счет взаимодействия магнитного поля с медной обмоткой. Движение хорошо прослеживается при помощи осциллографа. Своей формой оно напоминает синусоиду.
Роль переменного тока сложно переоценить. Главное его достоинство заключается в простоте передачи от источника к потребителю, возможность занижать или увеличивать напряжение при помощи трансформаторов. Также, переменные электрические токи можно доставлять потребителю с гораздо меньшими затратами.
Сопротивление
Сопротивлением является способность проводника замедлять прохождение заряженных частиц через свою структуру. На эту способность влияет материал проводника, его толщина и длина. Единицей измерения электрического сопротивления является 1 Ом.
Расчет производится при пропускании через проводник напряжения в один вольт и силой тока равной одному амперу. В электрических схемах данный параметр обозначается буквой «R».
Активное сопротивление
Переменный ток доставляется потребителю с целью его преобразования в иные виды энергии, например, тепло и свет. В бытовых сетях преобладает использование однофазного переменного тока. При подключении потребителя создается активное сопротивление.
Простые цепи переменного тока с активным сопротивлением включает в себя генератор тока и идеальный резистор. При этом должны соблюдаться необходимые условия для идеальной цепи:
Также, для идеального активного сопротивления должны соблюдаться следующие условия:
Все эти условия позволяют электрическим приборам работать в пределах точно установленных параметров с максимальным КПД. Любое изменение может быть причиной отсутствия надежного контактного соединения или неисправностью самого потребителя.
Для того чтобы рассчитать величину активного сопротивления в цепи, необходимо знать величину напряжения и силы тока. Для расчета используется формула: R=U/I. Формула состоит из следующих значений:
Далее можно сделать простой расчет. В качестве потребителя выступает электрическая печь, включенная в цепь однофазного переменного тока:
Расчетная величина активного сопротивления — это не окончательное значение. На нее влияет прежде всего сечение проводов включенных в цепь, схема взаимодействия между цепями емкостных и полупроводниковых элементов.
Активное значение цепи также вызывает безвозвратную потерю первоначальной электрической энергии, а так же приводит к снижению мощности.
Активная емкость
В простой схеме величина активного значения также зависит от активной емкости. Для идеальной емкости — в схеме под переменным напряжением должен находится конденсатор. Идеальный конденсатор обозначается буквой «С».
Для получения идеальной цепи с активной емкостью, должны соблюдаться следующие условия:
При данных условиях электрическая цепь приобретает следующие особенности:
Цепь переменного тока с активным емкостным сопротивлением может дополняться индуктивностью. Для создания индуктивности, в цепь включается катушка индуктивности. Катушка также добавляет свою долю сопротивления в общую цепь. При таком подключении в схеме появляется индуктивное сопротивление. Оба элемента: катушка и конденсатор, не являются конечными потребителями энергии. Эти элементы не находятся под постоянным напряжением, их работа строится на накоплении и отдаче тока в цепь.
Мощность
При наличии активного сопротивления, значительно снижается мощность этой цепи. Это значение зависит от скорости снижения напряжения и преобразования электрической энергии. В электрической схеме мощность обозначается буквой «P».
Для того чтобы добиться минимального снижения средней и мгновенной мощностей, которые образуются в момент появления активного сопротивления, снижения напряжения и преобразования энергий, необходимо чтобы простейшие цепи состояли из идеальных элементов с высокой электрической проводимостью.
Зависимость
Величина активного сопротивления во многом зависит от диаметра проводников. При подаче высокочастотных токов, сопротивление проводника может быть снижено, только если его поверхностный слой намного тоньше основного. Для того чтобы добиться идеального сечения, этот слой должен состоять из материала с очень высокой проводимостью, например, золота или серебра. Данный эффект возникает по причине взаимодействия напряжения и магнитного поля, образованного им. Поле сильно влияет на ток, протекающий по проводнику и выталкивает его на поверхностный слой. Таким образом ближе к поверхности проводника проводимость снижается и становится критично малой в его верхнем слое.
Так же присутствуют следующие эффекты: потери утечки и диэлектрические потери. Оба эффекта связаны с наличием конденсатора в цепи. Диэлектрические потери возникают за счет увеличения температуры диэлектрика внутри конденсатора. Потеря утечки возникает в следствии доли пробоя изолятор конденсатора.
Гистерезис. Это тоже тип потери энергии переменного тока. Такая потеря возникает при формировании магнитного поля вокруг предметов из металла. Электромагнитное воздействие приводит к нагреванию металла, а значит преобразованию энергии.
Последним фактором утечки является радиоизлучение. Радиоволны появляются по причине сильного магнитного поля и его взаимодействия с металлами цепи. Для подавления, особенно в радиоаппаратуре, используются экраны, которые впитывают часть поля и отталкивают остальную долю.
Замер
Измерение сопротивления осуществляется следующими способами:
Заключение
Активное сопротивление переменного тока важная величина. Она позволяет точно рассчитать, какая электроэнергия расходуется и какие ее утечки при этом возможны. В промышленных сетях при помощи этой величины рассчитывается доля потребления на различных участках с разными по мощности потребителями.