Что называется абсолютной погрешностью приближенного значения величины
Уроки математики и физики для школьников и родителей
понедельник, 28 октября 2019 г.
Урок 16. Абсолютная и относительная погрешность
Для подсчёта абсолютной погрешности необходимо из большего числа вычесть меньшее число.
В школе учится 374 ученика. Если округлить это число до 400 , то абсолютная погрешность измерения равна :
На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет
При округлении до 1280 абсолютная погрешность составляет
Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Но при выполнении различных измерений мы обычно представляем себе границы абсолютной погрешности и всегда можем сказать, какого определённого числа она не превосходит.
Торговые весы могут дать абсолютную погрешность, не превышающую 5 г, а аптекарские – не превышающую одной сотой грамма.
Длина рулона обоев составляет.
Границу абсолютной погрешности называют предельной абсолютной погрешностью .
Но абсолютная погрешность не даёт нам представление о качестве измерения, то есть о том, насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно разобраться в таком примере.
Допустим, что при измерении коридора длиной в 20 м мы допустили абсолютную погрешность всего только в 1 см. Теперь представим себе, что, измеряя корешок книги, имеющий 18 см длины, мы тоже допустили абсолютную погрешность в 1 см. Тогда понятно, что первое измерение нужно признать превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что на 20 м ошибка в 1 см вполне допустима и неизбежна, но на 18 см такая ошибка является очень грубой.
Отсюда ясно, что для оценки качества измерения существенна не сама абсолютная погрешность, а та доля, какую она составляет от измеряемой величины. При измерении коридора длиной в 20 м погрешность в 1 см составляет
Делаем вывод, что измеряя корешок книги, имеющий 18 см длины и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении коридора длиной в 20 м, то это измерение можно считать максимально точным.
Если ошибка, возникающая при измерении линейкой или каким либо другим измерительным инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве абсолютной погрешности измерения обычно берут половину деления. Если деления на линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.
Для измерения длины болта использованы метровая линейка с делениями 0,5 см и линейка с делениями 1 мм. В обоих случаях получен результат 3,5 см. Ясно, что в первом случае отклонение найденной длины 3,5 см от истинной, не должно по модулю превышать 0,5 см, во втором случае 0,1 см.
Если этот же результат получится при измерении штангенциркулем, то
Данный пример показывает зависимость абсолютной погрешности и границ, в которых находится точный результат, от точности измерительных приборов. В одном случае ∆ l = 0,5 и, следовательно,
Длина листа бумаги формата А4 равна (29,7 ± 0,1) см. А расстояние от Санкт-Петербурга до Москвы равно (650 ± 1) км. Абсолютная погрешность в первом случае не превосходит одного миллиметра, а во втором – одного километра. Необходимо сравнить точность этих измерений.
Если вы думаете, что длина листа измерена точнее потому, что величина абсолютной погрешности не превышает 1 мм, то вы ошибаетесь. Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.
При измерении длины листа абсолютная погрешность не превышает 0,1 см на 29,7 см, то есть в процентном отношении это составляет
Когда мы измеряем расстояние от Санкт-Петербурга до Москвы, то абсолютная погрешность не превышает 1 км на 650 км, что в процентном соотношении составляет
Видим, что расстояние между городами измерено точнее, чем длинна листа формата А4.
Истинное значение измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и действительная величина абсолютной погрешности почти никогда не может быть вычислена. На практике абсолютной погрешности недостаточно для точной оценки измерения. Поэтому на практике более важное значение имеет определение относительной погрешности измерения.
Абсолютная погрешность, как мы убедились, не даёт возможности судить о качестве измерения. Поэтому для оценки качества приближения вводится новое понятие – относительная погрешность. Относительная погрешность позволяет судить о качестве измерения.
Относительная погрешность – это частное от деления абсолютной погрешности на модуль приближённого значения измеряемой величины, выраженная в долях или процентах.
Округлим дробь 14,7 до целых и найдём относительную погрешность приближённого значения :
При измерении в (сантиметрах) толщины b стекла и длины l книжной полки получили следующие результаты :
l ≈ 100 с точностью до 0,1.
Абсолютная погрешность каждого из этих измерений не превосходит 0,1 . Однако 0,1 составляет существенную часть числа 0,4 и ничтожную часть числа 100 . Это показывает, что качество второго измерения намного выше, чем первого.
Если взять абсолютную погрешность в 1 см, при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10% . А для десятиметрового отрезка 1 см не имеет значения, эта ошибка всего в 0,1%.
Чем меньше относительная погрешность измерения, тем оно точнее.
Различают систематические и случайные погрешности.
Систематической погрешностью называют ту погрешность, которая остаётся неизменной при повторных измерениях.
Случайной погрешностью называют ту погрешность, которая возникает в результате воздействия на процесс измерения внешних факторов и может изменять своё значение.
В большинстве случаев невозможно узнать точное значение приближённого числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.
Продавец взвешивает арбуз на чашечных весах. В наборе наименьшая гиря – 50 г. Взвешивание показало 3600 г. Это число – приближённое. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превосходит
Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.
Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной погрешностью.
На практике относительную погрешность округляют до двух значащих цифр, выполняя округление с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.
Для х = 1,7 ± 0,2 относительная погрешность измерений равна :
Здесь а = 17,9 см. Можно принять ∆ = 0,1 см, так как с точностью до 1 мм измерить карандаш нетрудно, а значительно уменьшить предельную погрешность не удастся (при навыке можно прочесть на хорошей линейке и 0,02 и даже 0,01 см, но у самого карандаша рёбра могут отличаться на большую величину ). Относительная погрешность равна
По условию, предельная относительная погрешность должна составлять 0,05% от 35 мм. Следовательно, предельная абсолютная погрешность равна
Можно воспользоваться формулой
Подставляя в формулу
Действия над приближёнными числами.
Сложение и вычитание приближённых чисел.
Абсолютная погрешность суммы двух величин равна сумме абсолютных погрешностей отдельных слагаемых.
Складываются приближённые числа
Пусть предельная погрешность первого есть 5 , а второго 1. Тогда предельная погрешность суммы равна
Так, если истинное значение первого есть 270 , а второго 33 , то приближённая сумма
Найти сумму приближённых чисел :
0,0909 + 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
Предельная погрешность каждого слагаемого
Предельная погрешность суммы :
При значительном числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего примера, где 9 слагаемых. Истинная величина каждого из них может отличаться в пятом знаке от взятого приближённого значения на 1, 2, 3, 4 или даже на 5 единиц в ту и в другую сторону.
Например, первое слагаемое может быть больше своего истинного значения на 4 единицы пятого знака, второе – на две, третье – меньше истинного на одну единицу и так далее.
– когда истинная величина каждого слагаемого больше приближённой величины на 0,00005 ;
– когда истинная величина каждого слагаемого меньше приближённой величины на 0,00005 .
Значит, случаи, когда погрешность суммы совпадает с предельной, составляют только 0,0000002% всех возможных случаев.
Найти сумму точных чисел :
0,0909 + 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
Сложение даёт следующий результат – 0,6187.
Округлим их до тысячных и сложим :
0,091 + 0,083 + 0,077 + 0,071 + 0,067
+ 0,062 + 0,059 + 0,056 + 0,053 = 0,619.
Предельная погрешность суммы :
Приближённая сумма отличается от истинной на 0,0003 , то есть на треть единицы последнего знака приближённых чисел. Все три знака приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо неверной.
Произведём в наших слагаемых округление до сотых. Теперь предельная погрешность суммы будет :
0,09 + 0,08 + 0,08 + 0,07 + 0,07
+ 0,06 + 0,06 + 0,06 + 0,05 = 0,62.
Истинная погрешность составляет только 0,0013 .
Предельная абсолютная погрешность разности двух величин равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.
Пусть предельная погрешность приближённого уменьшаемого 85 равна 2 , а предельная погрешность вычитаемого 32 равна 3 . Предельная погрешность разности
В самом деле, истинное значение уменьшаемого и вычитаемого могут равняться
Тогда истинная разность есть
Она на 5 отличается от приближённой разности 53 .
Относительная погрешность суммы и разности.
Предельную относительную погрешность суммы и разности легко найти, вычислив сначала предельную абсолютную погрешность.
Предельная относительная погрешность суммы (но не разности!) лежит между наименьшей и наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют одну и ту же (или примерно одну и ту же) предельную относительную погрешность, то и сумма имеет ту же (или примерно ту же) предельную относительную погрешность. Другими словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых. При значительном же числе слагаемых сумма, как правило, гораздо точнее слагаемых.
Найти предельную абсолютную и предельную относительную погрешность суммы чисел :
В каждом слагаемом суммы
24,4 + 25,2 + 24,7 = 74,3
предельная относительная погрешность примерно одна и та же, а именно :
Такова же она и для суммы.
Здесь предельная абсолютная погрешность равна 0,15 , а относительная
0,15 : 74,3 ≈ 0,15 : 75 = 0,2%.
В противоположность сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и вычитаемое. > особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.
Относительные погрешности при сложении и вычитании складывать нельзя.
Умножение и деление приближённых чисел.
При делении и умножении чисел требуется сложить относительные погрешности.
Пусть перемножаются приближённые числа 50 и 20 , и пусть предельная относительная погрешность первого сомножителя есть 0,4%, а второго 0,5%.
Тогда предельная относительная погрешность произведения
приближённо равна 0,9% . В самом деле предельная абсолютная погрешность первого сомножителя есть
Поэтому истинная величина произведения не больше чем
(50 + 0,2)(20 + 0,1) = 1009,02,
Если истинная величина произведения есть 1009,2 , то погрешность произведения равна
а если 991,02 , то погрешность произведения равна
Рассмотренные два случая – самые неблагоприятные. Значит, предельная абсолютная погрешность произведения есть 9,02 . Предельная относительная погрешность равна
Абсолютная и относительная погрешность
Всего получено оценок: 1757.
Всего получено оценок: 1757.
Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.
Абсолютная погрешность
Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.
Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.
Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:
Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.
На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.
Относительная погрешность
Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.
Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.
Правила подсчета погрешностей
Для номинальной оценки погрешностей существует несколько правил:
Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.
Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.
Что мы узнали?
Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.
Относительная и абсолютная погрешность – формула определения, как рассчитать погрешность измерения
Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.
Абсолютная погрешность
Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.
Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.
Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:
Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.
На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.
Относительная погрешность
Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.
Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.
Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.
Правила подсчета погрешностей
Для номинальной оценки погрешностей существует несколько правил:
Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.
Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.
Что мы узнали?
Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.
Приближенное значение величины. Абсолютная и относительная погрешности
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
БИК Курс лекций по дисциплине «Численные методы»
Приближенные числа и действия над ними
1.1. Приближенное значение величины. Абсолютная и относительная погрешности
Приближенное значение величины. Погрешность
Абсолютная и относительная погрешности
1. Приближенное значение величины. Погрешность
В процессе решения задачи вычислитель сталкивается с различными числами, которые могут быть точными или приближенными. Точные числа дают истинное значение величины числа, приближенные – близкое к истинному, причем степень близости определяется погрешностью вычисления.
Например, в утверждениях: «куб имеет 6 граней»; «на руке 5 пальцев»; «в классе 32 ученика»; «в книге 582 страницы» числа 6, 5, 32, 582 – точные. В утверждениях: «ширина дома 14,25 м»; «вес коробки 50 г»; «в лесу около 5000 деревьев» числа 14,25; 50; 5000 – приближенные. Измерение ширины дома производится измерительными средствами, которые сами могут быть неточными; кроме того, измеритель при измерении допускает ошибку (погрешность). При взвешивании коробки также допускается ошибка, так как автоматические весы не чувствительны к увеличению или уменьшению веса на 0,5 г. Произвести точно подсчет количества деревьев в лесу невозможно, так как некоторые деревья могут быть подсчитаны дважды; другие совсем не включались в счет; некоторые деревья были отнесены к кустарникам и исключены из счета, и, наоборот, кустарники включены в счет количества деревьев.
Во многих случаях жизни невозможно найти точное значение величины числа и вычислителю приходится довольствоваться его приближенным значением. Кроме того, очень часто вычислитель сознательно заменяет точное значение приближенным в целях упрощения вычислений.
Таким образом, приближенным числом а называется число, незначительно отличающееся от точного числа А и заменяющее последнее в вычислениях.
При решении той или иной задачи вручную или на вычислительной машине мы получаем числовой результат, который, как правило, не является точным, так как при постановке задачи и в ходе вычислений возникают погрешности. Поэтому любая задача, связанная с массовыми действиями над числами, может быть решена с той или иной степенью точности. В связи с этим при постановке задачи должна быть указана точность ее решения, т. е. задана погрешность, максимально допустимая в процессе всех вычислений.
Источниками погрешностей (ошибок) могут быть:
1) неточное отображение реальных процессов с помощью математики, в связи с чем рассматривается не сам процесс, а его идеализированная математическая модель. Не всегда реальные явления природы можно точно отобразить математически. Поэтому принимаются условия, упрощающие решение задачи, что вызывает появление погрешностей. Некоторые задачи невозможно решить в точной постановке и они могут заменяться другими задачами, близкими по результатам первым. При этом также возникают погрешности;
2) приближенное выражение величин, входящих в условие задачи, вследствие их неточного измерения. Это погрешности исходных данных, физических констант, чисел π, е и др.;
3) замена бесконечных процессов, пределами которых являются искомые величины, конечной последовательностью действий. Сюда относятся погрешности, образующиеся в результате обрыва какого-то бесконечного процесса на некотором этапе. Например, если в ряде
взять определенное количество членов и принять их сумму за sin х, то мы, естественно, допускаем погрешность;
4) округление исходных данных, промежуточных или окончательных результатов, когда при вычислениях используется лишь конечное число цифр числа.
При отбрасывании младших разрядов числа имеет место погрешность. Пусть, например, число 0,7835478931 требуется записать в ячейку электронной цифровой вычислительной машины с разрядной сеткой, допускающей запись семизначного десятичного числа. Поэтому данное число нужно округлить так, чтобы в нем осталось не более семи знаков после запятой. Тогда округленное число примет следующий вид: 0,7835479;
5) кроме указанных выше случаев, погрешности могут появляться в результате действий над приближенными числами. В этом случае погрешности исходных данных в какой-то мере переносятся на результат вычислений.
Полная погрешность является результатом сложного взаимодействия всех видов погрешностей. При решении конкретных задач те или иные погрешности могут отсутствовать или мало влиять на образование полной погрешности. Однако для полного анализа погрешностей необходимо учитывать все их виды.
Во всех случаях полная погрешность не может превышать по своей абсолютной величине суммы абсолютных величин всех видов погрешностей, но обычно она редко достигает такой максимальной величины.
Таким образом, погрешности можно подразделить на три большие группы:
1) исходные, или неустранимые, к которым относятся погрешности, возникающие в результате приближенного описания реальных процессов и неточного задания исходных данных, а также погрешности, связанные с действиями над приближенными числами. Эти погрешности проходят через все вычисления и, являются неустранимыми;
2) погрешности округления (зарождающиеся), которые появляются в результате округления исходных данных, промежуточных и окончательных результатов;
3) остаточные, возникающие в результате замены бесконечных процессов конечной последовательностью действий;
2. Численные методы
На практике в большинстве случаев найти точное решение математических задач не удается. Это происходит главным образом не потому, что мы не умеем это сделать, а поскольку искомое решение обычно не выражается в привычным для нас элементарных или других известных функциях. Поэтому важное значение приобрели методы, особенно в связи с возрастанием роли математических методов в различных областях науки и техники и с появлением высокопроизводительных ЭВМ.
Под численными методами подразумевается методы решения задач, сводящиеся к арифметическим и некоторых логическим действиям над числами, т.е. к тем действиям, которые выполняет ЭВМ.
В зависимости от сложности задачи, заданной точности, применяемого метода и т.д. может потребоваться выполнить от нескольких десятков многих миллиардов действий. Если число действий не превышают тысячи, то с такой задачей обычно может справиться человек, имя в распоряжении калькулятор и набор таблиц элементарных функций. Однако без ЭВМ явно не обойтись, если для решения задач нужно выполнить, скажем, порядка миллиона действий и тем более, когда решение должно быть найдено в жатые сроки.
Решение, полученное численным методом, обычно является приближенным, т.е. содержит некоторую погрешность.
Оценка погрешности может быть произведена: с помощью абсолютной погрешности; с помощью относительной погрешности; с помощью остаточного члена; с помощью статистических оценок.
При работе с приближенными величинами вычислитель должен уметь:
а) давать математические характеристики точности приближенных величин;
б) зная степень точности исходных данных, оценить степень точности результатов;
в) брать исходные данные с такой степенью точности, чтобы обеспечить заданную точность результата. В этом случае не следует слишком завышать точность исходных данных, чтобы избавить вычислителя от бесполезных расчетов;
г) уметь правильно построить вычислительный процесс, чтобы избавить его от тех выкладок, которые не окажут влияния на точные цифры результата.
3. Абсолютная и относительная погрешности
Пусть a – точное, вообще говоря, неизвестное числовое значение некоторой величины.
a* – известное приближенное числовое значение этой величины (приближенное число).
Абсолютная величина разности между точным числом и его приближенным значением называется абсолютной погрешностью приближенного числа:
(1)
Здесь возможны два случая.
1. Точное чиcло а нам известно. Тогда абсолютная; погрешность приближенного числа легко находится по формуле (1).
Пример 1. Пусть a = 784,2737, a * = 784,274; тогда; абсолютная погрешность Δ а = | а- a * | = |784,2737—784,274| = 0,0003.
2. Точное число a нам неизвестно, тогда вычислить абсолютную погрешность по формуле (1) нельзя. Поэтому пользуются понятием границы абсолютной погрешности, удовлетворяющей неравенству
Граница абсолютной погрешности, т. е. число, заведомо превышающее абсолютную погрешность (или в крайнем случае равное ей), называется предельной абсолютной погрешностью.
Следовательно, если Δа* – предельная абсолютная погрешность, то
Δ(а*) = |а- a*| Δа* (2)
Значение точного числа А всегда заключено в следующих границах:
a* — Δа* a
a* + Δа*. (3)
Пример 2. Число 45,3 получено округлением. Точное значение числа неизвестно, однако, пользуясь правилами округления чисел, можно сказать, что абсолютная погрешность не превышает (меньше или равна) 0,05.
Следовательно, границей абсолютной погрешности (предельной абсолютной погрешностью) можно считать 0,05. Записывают это так: 45,3 ( ± 0,05). Скобки часто опускают, так что запись 45,3 ± 0,05 означает то же самое. Двойной знак ± означает, что отклонение приближенного значения числа от точного возможно в обе стороны. В качестве границы абсолютной погрешности берут по возможности наименьшее число.
Пример 3. При измерении длины отрезка оказалось, что ошибка, допущенная нами, не превышает 0,5 см; тем более она не превышает 1, 2 или 3 см. Каждое из этих чисел можно считать границей абсолютной погрешности. Однако нужно указать наименьшую из них, так как чем меньше граница абсолютной погрешности, тем точнее выражается приближенное значение числа. В записи приближенного числа, полученного в результате измерения, обычно отмечают его предельную абсолютную погрешность.
На практике часто применяют выражения типа: «с точностью до 0,01»; «с точностью до 1 см и т. д. Это означает, что предельная абсолютная погрешность соответственно равна 0,01; 1 см и т. д.
Пример 4. Если длина отрезка l = 184 см измерена с точностью до 0,05 см, то пишут l = 184 см ±0,05 см. Здесь предельная абсолютная погрешность Δ l *= 0,05 см, а точная величина длины l отрезка заключена в следующих границах: 183,95 см l
184,05 см.
По абсолютной и предельной абсолютной погрешностям нельзя судить о том, хорошо или плохо произведено измерение.
Пример 5. Пусть при измерении книги и длины стола были получены результаты: l 1 = 28,4 ±0,1 (см) и l 2 = 110,3 ±0,1 (см). И в первом, и во втором случае предельная абсолютная погрешность составляет 0,1 см. Однако второе измерение было произведено более точно, чем первое.
Для того чтобы определить качество произведенных измерений, необходимо определить, какую долю составляет абсолютная или предельная абсолютная погрешность от измеряемой величины, В связи с этим вводится понятие относительной погрешности.
Относительной погрешностью а приближенного числа а называется отношение абсолютной погрешности Δ а к модулю точного числа А (А
0), т.е.
а =
(4)
Δ а = | A | а (4’)
Из соотношений (4) и (5) вытекает, что
* а ; Δ а
| A |
а *.
Из определения предельной абсолютной погрешности следует, что Δ а Δ а * . Тогда можно записать
Δ а * =| A | а *. (6)
и за предельную относительную погрешность приближенного числа а можно принять
а * =
. (7)
Учитывая, что А, как правило, неизвестно и что А а, равенства (6) и (7) можно записать так:
а * =
. (7’)
Возвращаясь к примеру 5, найдем предельные относительные погрешности измерения книги и стола:
* l 1 = 0,1(см)/28,4(см)
0,0035, или 0,35%;
* l 2 = 0,1(см)/110,3(см)
0,009, или 0,09%.
Таким образом, измерение стола было произведено намного точнее.
Очевидно, что как относительная погрешность, так и предельная относительная погрешность представляют собой отвлеченные числа, не зависящие от единиц, в которых выражаются результаты измерений.
Пример 6. Определить (в процентах) предельную относительную погрешность приближенного числа а = 35,148 ±0,00074.
Решение. Воспользуемся формулой (7). Тогда
а * =
= 0,00074 / 35,148 = 0,000021
0,0021%.
Пример 7. Определить предельную абсолютную погрешность приближенного числа а = 4,123, если а * = 0,01%.
Решение. Запишем проценты в виде десятичной дроби и для определения предельной абсолютной погрешности и воспользуемся формулой (6′); тогда
Δ а * = | а | а * = 4,123 • 0,0001 = 0,00042.
Пример 8. Определить относительные погрешности чисел х и у, полученных при измерении углов. Какой из результатов более точный?
Решение. Переведем заданные значения x и у в секунды и определим относительные погрешности измерений. Более точным измерением будет то, где относительная погрешность меньше. Имеем:
x = 181810″ ±3″, x = 3/181810
0,000017 = 0,0017%;
у = 162936″±2″, y =2/162936
0,000013 = 0,0013%.
Измерение y произведено более точно.
Пример 9. Определить, какое равенство точнее: a 1 = 13/19 0,684 или a 2 =
7,21?
Решение. Для нахождения предельных абсолютных погрешностей берем числа a 1 и a 2 с большим числом десятичных знаков: 13/19 0,68421;
7,2111. Определяем предельные абсолютные погрешности, округляя их с избытком:
Δ * а 2 = | 7,2111-7,21 | 0,0012.
Находим предельные относительные погрешности:
* а1 = Δ* а1 / a 1 = 0,00022/0,684
0,00033 = 0,033%;
* а2 = Δ* a 2 / a 2 = 0,0012/7,21
0,00017=0,017%.