Что называется абсолютной ошибкой измерения
Измерения. Классификация ошибок измерений
В физике и в других науках весьма часто приходится производить измерения различных величин (например, длины, массы, времени, температуры, электрического сопротивления и т. д.).
Измерение – процесс нахождения значения физической величины с помощью специальных технических средств – измерительных приборов.
Измерительным прибором называют устройство, с помощью которого осуществляется сравнение измеряемой величины с физической величиной того же рода, принятой за единицу измерения.
Различают прямые и косвенные методы измерений.
Прямые методы измерений – методы, при которых значения определяемых величин находятся непосредственным сравнением измеряемого объекта с единицей измерения (эталоном). Например, измеряемая линейкой длина какого-либо тела сравнивается с единицей длины – метром, измеряемая весами масса тела сравнивается с единицей массы – килограммом и т. д. Таким образом, в результате прямого измерения определяемая величина получается сразу, непосредственно.
Косвенные методы измерений – методы, при которых значения определяемых величин вычисляются по результатам прямых измерений других величин, с которыми они связаны известной функциональной зависимостью. Например, определение длины окружности по результатам измерения диаметра или определение объема тела по результатам измерения его линейных размеров.
Ввиду несовершенства измерительных приборов, наших органов чувств, влияния внешних воздействий на измерительную аппаратуру и объект измерения, а также прочих факторов все измерения можно производить только с известной степенью точности; поэтому результаты измерений дают не истинное значение измеряемой величины, а лишь приближенное. Если, например, вес тела определен с точностью до 0,1 мг, то это значит, что найденный вес отличается от истинного веса тела менее чем на 0,1 мг.
Точность измерений – характеристика качества измерений, отражающая близость результатов измерений к истинному значению измеряемой величины.
Чем меньше погрешности измерений, тем больше точность измерений. Точность измерений зависит от используемых при измерениях прибо- ров и от общих методов измерений. Совершенно бесполезно стремиться при измерениях в данных условиях перейти за этот предел точности. Можно свести к минимуму воздействие причин, уменьшающих точность измерений, но полностью избавиться от них невозможно, то есть при измерениях всегда совершаются более или менее значительные ошибки (погрешности). Для увеличения точности окончательного результата всякое физическое измерение необходимо делать не один, а несколько раз при одинаковых условиях опыта.
Разница между абсолютной ошибкой и относительной ошибкой
Содержание:
Что такое абсолютная ошибка?
Пример: Допустим, мы хотим измерить длину карандаша с помощью линейки с миллиметровыми отметками. Мы можем измерить его длину с точностью до миллиметра. Если вы получите значение 125 мм, оно будет выражено как 125 +/- 1 мм. Абсолютная погрешность составляет +/- 1 мм.
Что такое относительная ошибка?
Относительная ошибка зависит от двух переменных; абсолютная погрешность и экспериментальное значение измерения. Следовательно, эти два параметра должны быть известны для расчета относительной ошибки. Относительная ошибка вычисляется как отношение абсолютной ошибки к экспериментальному значению. Выражается в процентах или дробях; так что в нем нет единиц.
Относительная ошибка интегрирования Монте-Карло для вычисления числа пи
В чем разница между абсолютной ошибкой и относительной ошибкой?
Определение абсолютной ошибки и относительной ошибки
Абсолютная ошибка:
Другими словами, это разница между истинным значением и экспериментальным значением.
Относительная ошибка:
Единицы и расчет абсолютной погрешности и относительной погрешности
Единицы
Абсолютная ошибка:
Он имеет те же единицы измерения, что и измеренное значение. Например, если вы измеряете длину книги в сантиметрах (см), абсолютная ошибка также будет иметь те же единицы.
Относительная ошибка:
Относительная погрешность может быть выражена в виде дроби или процента. Однако у обоих нет единицы в стоимости.
Расчет ошибок
Пример 1:Фактическая длина земли составляет 500 футов. Измерительный прибор показывает, что длина составляет 508 футов. |
Абсолютная ошибка:
Относительная ошибка:
Студент хотел измерить высоту стены в комнате. Он измерил значение с помощью метровой линейки (с точностью до миллиметра), оно составило 3,215 м. |
Абсолютная ошибка:
Абсолютная погрешность = +/- 1 мм = +/- 0,001 м (Наименьшее значение, которое можно прочитать с помощью линейки)
Относительная ошибка:
Относительная погрешность = Абсолютная погрешность ÷ Экспериментальное значение = 0,001 м ÷ 3,215 м * 100 = 0,0003%
Погрешности измерений, представление результатов эксперимента
п.1. Шкала измерительного прибора
Примеры шкал различных приборов:
Манометр – прибор для измерения давления, круговая шкала | Вольтметр – прибор для измерения напряжения, дуговая шкала | Индикатор громкости звука, линейная шкала |
п.2. Цена деления
Пример определения цены деления:
Определим цену деления основной шкалы секундомера. Два ближайших пронумерованных деления на основной шкале: a = 5 c b = 10 c Между ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления. |
Цена деления: \begin Физическую величину измеряют с помощью прибора Измерение длины бруска линейкой Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений Определение площади столешницы при измеренной длине и ширине Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.) Определяется несовершенством методов и допущениями в методике. Погрешность теории (модели) Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности. Определяется субъективным фактором, ошибками экспериментатора. Примеры значащих цифр: В простейших измерениях инструментальная погрешность прибора является основной. Пример получения результатов прямых измерений с помощью линейки: Второе измерение точнее, т.к. его относительная погрешность меньше. Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки). Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений. Пример расчета истинного значения и погрешности для серии прямых измерений: Составим расчетную таблицу: Сначала находим среднее значение всех измерений: \begin Как найти результат прямого измерения, мы рассмотрели выше. Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса. Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно? Составим таблицу для расчета цены деления: Инструментальная точность мензурки равна половине цены деления. Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке. Ответ: Мерой точности является относительная погрешность измерений. Получаем: \begin Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч. Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.п.3. Виды измерений
п.4. Погрешность измерений, абсолютная и относительная погрешность
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:п.5. Абсолютная погрешность серии измерений
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.№ опыта 1 2 3 Сумма Масса, г 99,8 101,2 100,3 301,3 Абсолютное отклонение, г 0,6 0,8 0,1 1,5
Затем считаем абсолютное отклонение каждого опыта как модуль разности \(m_0\) и измерения. \begin
Поэтому абсолютная погрешность измерения массы: \begin п.6. Представление результатов эксперимента
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.п.7. Задачи
№ мензурки a, мл b, мл n \(\triangle=\frac 1 20 40 4 \(\frac<40-20><4+1>=4\) 2 100 200 4 \(\frac<200-100><4+1>=20\) 3 15 30 4 \(\frac<30-15><4+1>=3\) 4 200 400 4 \(\frac<400-200><4+1>=40\)
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):№ мензурки Объем \(V_0\), мл Абсолютная погрешность
\(\triangle V=\frac<\triangle><2>\), млОтносительная погрешность
\(\delta_V=\frac<\triangle V>1 68 2 3,0% 2 280 10 3,6% 3 27 1,5 5,6% 4 480 20 4,2%
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка
Ответ: \(\delta_2\lt \delta_1\), второе измерение точней.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.