Что называется абсолютной и относительной погрешностью элемента
level_meter
Уровнеметрия
Приборы и системы измерения уровня
Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.
Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).
См.Абсолютная погрешность микрокомпьютерного расходомера скоростемера МКРС
Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.
Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.
См.Относительная погрешность ультразвукового уровнемера ЭХО-АС-01
Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.
Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.
что называется предельной, абсолютной и относительной погрешностью
1.4. Погрешности приближенных вычислений
Тема 1. Введение. Приближенные числа и действия над ними. Оценка точности вычислений
1.4. Погрешности приближенных вычислений
Понятие о погрешности приближения
Естественно, что приближенное и точное число всегда отличаются друг от друга. Иначе говоря, при приближении возникает некоторая погрешность приближения. Причем, в математике различают относительную и абсолютную погрешность.
При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300-1284=16. А при округлении до 1280 абсолютная погрешность составляет 1280-1284 = 4.
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому (точному) числу.
При округлении числа 197 до 200 абсолютная погрешность составляет 200-197 = 3. Относительная погрешность равна 3/197 ≈ 0,01523 или приближенно 3/200 ≈ 1,5%.
В большинстве случаев невозможно узнать точное значение приближенного числа, а значит и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.
Например, продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 ≈ 1,4%.
Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей) называется предельной относительной погрешностью.
Предельная абсолютная погрешность обозначается греческой буквой Δ – «дельта». А предельная относительная погрешность – греческой буквой δ («дельта малая»). Если приближенное число обозначить буквой α, то δ = Δ/ α.
В примере с арбузом за предельную абсолютную погрешность можно взять Δ = 50г, а за предельную относительную – δ = 1,4%.
Погрешность действий над приближенными числами
Предельная абсолютная погрешность суммы (разности) не превышает суммы предельных абсолютных погрешностей отдельных слагаемых.
Пусть даны точные числа и их приближенные значения: 2,463 ≈ 2,46 и 3,208 ≈ 3,21.
Их абсолютные погрешности приближений соответственно равны: 2,463-2,46 = 0,003 и 3,21-3,208 = 0,002.
Рассмотрим сумму приближенных чисел – 2,46+3,21 = 5,67.
Предельная погрешность суммы равна 0,003+0,002 = 0,005.
Если проверить, то получится, что точная сумма будет 2,463+3,208 = 5,671.
Следовательно, точно вычисленная погрешность приближения будет: 5,671-5,67 = 0,001. Действительно 0,001 ≤ 0,005.
Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей.
Пусть перемножаются приближенные числа 50 и 20 и пусть предельная относительная погрешность первого сомножителя равна 0,4%, а второго 0,5%. тогда предельная относительная погрешность произведения 50*20 = 1000 приближенно равна 0,9%.
Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя.
Таким образом, легко заметить, что при приближенных вычислениях погрешность может накапливаться!
Что такое относительная и абсолютная погрешность
Понятия приближенных значений известны науке с древнейших времен. После открытия пифагорейцами иррациональных чисел приближенными вычислениями стали заниматься более серьезно. Но понятие само погрешности появилось лишь в XV веке.
Как определить
Приближенное значение определяется следующим образом:
Число а называется приближенным значением некоторого числа А, если его значение несколько отклоняется от значения А. При этом:
Разность между числом А и его приближенным значением а называют ошибкой или погрешностью. Ошибку приближенной величины а обозначают как Δа:
Модуль разности между величиной и ее приближенным значением называется абсолютной погрешностью. Ее часто обозначают греческой буквой Δ:
Запись приближенного результата при этом имеет вид:
В простейших случаях, когда значение величины А известно точно, абсолютная погрешность вычисляется просто. Рассмотрим такой пример:
Пусть точное значение А = 2/625 = 0,0032, а его приближенное значение а = 0,003.
В этом случае абсолютная погрешность будет:
Δ = |0,0032 — 0,003| = 0,0002
Но на практике такие простые задачи встречаются редко. Гораздо чаще точное значение А вообще неизвестно. В этих случаях абсолютная погрешность определяется при помощи разных способов, в зависимости от условий конкретной задачи.
Если речь идет об измерениях, то под абсолютной погрешностью понимают разность между показаниями измерительного прибора и истинным значением величины.
Связь абсолютной и предельной абсолютной погрешностей
Как уже говорилось, в большинстве случаев точное значение величины А нам неизвестно. Это означает, что точное значение абсолютной погрешности найти просто невозможно, и приходится лишь оценивать ее каким-то числом, которое называют предельной абсолютной погрешностью Δа. При этом справедливо неравенство:
Предельная абсолютная погрешность может иметь бесконечное количество значений. Ведь если нам удалось оценить какое-то значение Δа, то все числа, которые больше него, тоже будут удовлетворять определению предельной абсолютной погрешности. Для решения практических задач нужно стараться найти минимальное значение Δа.
Относительная погрешность
Если внимательно проанализировать определения, то становится очевидно, что ни абсолютная погрешность, ни предельная абсолютная погрешность не могут хорошо характеризовать точность, с которой выполнены измерения или вычисления. Например, если мы вычисляем или измеряем расстояние от Земли до Солнца, то абсолютная погрешность в 1 метр – это ничтожно мало. Но если мы измеряем рост человека, то точно такая же абсолютная погрешность в 1 м – это недопустимо много.
Оценить насколько «хороша» полученная абсолютная погрешность позволяет величина, называемая относительной погрешностью δ. Она равна отношению абсолютной погрешности к модулю самой величины:
Аналогично определяется предельная относительная погрешность:
Относительные погрешности часто вычисляются в процентах, то есть:
Простейшие примеры вычисления погрешностей
Рассмотрим несколько наглядных примеров определения погрешностей.
Пример 1
Дано значение числа А = 0,2656. Округлить его до трех значащих цифр, вычислить абсолютную и относительную погрешности.
Приближенное значение: а = 0,266.
Абсолютная погрешность: Δ = |А — а| = |0,2655 – 0,266| = 0,0005.
Относительная погрешность: δ = Δ / |А| * 100% = 0,0005/0,2655*100 = 0,188%.
Ответ: Δ = 0,0005; δ = 0,188%.
Пример 2
Даны значение числа А = 5,8650 и его относительная погрешность δ = 2%. Найти абсолютную погрешность.
δ = Δ / |А| * 100%, следовательно
Δ = А * δ / 100 = 5,8650 * 2 / 100 = 0,1173.
Пример 3
Расстояние А = 12,5 км было измерено с точностью до 5 м, а расстояние В = 10 м было измерено с точностью до 1 см. Какое из этих измерение является более качественным?
А = 12,5 км = 12500 м;
Чтобы ответить на поставленный вопрос, нам нужно сравнить относительные погрешности измерений. Имеем:
δА = ΔА / |А| * 100% = 5 / 12500 * 100 = 0,04%.
δВ = ΔВ / |А| * 100% = 1 / 1000 * 100 = 0,1%.
Так как δВ > δА, то качество измерения расстояния В ниже, чем качество измерения расстояния А.
Ответ: Измерение расстояния А является более качественным.
Об абсолютной и относительной погрешности в видео:
О том как найти процент от числа читайте на нашем сайте по ссылке.
Абсолютная и относительная погрешность
Абсолютная и относительная погрешность
Абсолютной погрешностью или, короче, погрешностью приближенного числа называется разность между этим числом и его точным значением (из большего числа вычитается меньшее)
Относительной погрешностью приближенного числа называется отношение абсолютной по-
грешности приближенного числа к самому этому числу.
В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.
Пример 3. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая — 50 г.
Взвешивание дало 3600 г. Это число — приближенное. Точная масса арбуза неизвестна. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превосходит
Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью. Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной погрешностью.
В примере 3 за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность — 1,4%.
Величина предельной погрешности не является вполне определенной. Так, в примере 3 можно принять за предельную абсолютную погрешность 100 г, 150 г и вообще всякое число, большее чем 50 г. На практике берется по возможности меньшее значение предельной погрешности. В тех случаях, когда известна точная величина погрешности, эта величина служит одновременно предельной погрешностью.
Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная). Когда она прямо не указана, подразумевается, что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то
подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной порешности числа, округленного по правилам.
Предельная абсолютная погрешность обозначается греческой буквой («дельта»); предельная относительная погрешность — греческой буквой 5 («дельта малая»). Если приближенное число обозначить буквой а, то
Пример 4. Длина карандаша измерена линейкой с миллиметровыми делениями. Измерение показало 17,9 см. Какова предельная относительная погрешность этого измерения?
Здесь а — 17,9 см; можно принять А — 0,1 см, так как с точностью до 1 мм измерить карандаш нетрудно, а значительно уменьшить предельную погрешность не удастся. Относительная погрешность равна Округляя находим
Пример 5. Цилиндрический поршень имеет около 35 мм в диаметре. С какой точностью нужно его
измерить микрометром, чтобы предельная относительная погрешность составляла 0,05%?
Решение. По условию, предельная относительная погрешность должна составлять 0,05% от 35 мм.
Следовательно, предельная абсолютная погрешность равна или, усиливая, 0,02 (мм).
Можно воспользоваться формулой Подставляя в нее a=35, b=0,0005, имеем Значит
Абсолютная и относительная погрешности
Допустим, что точная ширина стола – А=384 мм, а мы, измерив ее, получили а=381 мм. Модуль разности между точным значением измеряемой величины и ее приближенным значением называется абсолютной погрешностью . В данном примере абсолютная погрешность 3 мм. Но на практике мы никогда не знаем точного значения измеряемой величины, поэтому не можем точно знать абсолютную погрешность.
Но обычно мы знаем точность измерительных приборов, опыт наблюдателя, производящего измерения и т.д. Это дает возможность составить представление об абсолютной погрешности измерения. Если, например, мы рулеткой измеряем длину комнаты, то нам нетрудно учесть метры и сантиметры, но вряд ли мы сможем учесть миллиметры. Да в этом и нет надобности. Поэтому мы сознательно допускаем ошибку в пределах 1 см. абсолютная погрешность длины комнаты меньше 1 см. Измеряя длину какого-либо отрезка миллиметровой линейкой, мы имеем право утверждать, что погрешность измерения не превышает 1 мм.
Абсолютная погрешность eа приближенного числа а дает возможность установить границы, в которых лежит точное число А:
Абсолютная погрешность не является достаточным показателем качества измерения и не характеризует точность вычислений или измерений. Если известно, что, измерив некоторую длину, мы получили абсолютную погрешность в 1 см, то никаких заключений о том, хорошо или плохо мы измеряли, сделать нельзя. Если мы измеряли длину карандаша в 15 см и ошиблись на 1 см, наше измерение никуда не годится. Если же мы измеряли 20-метровый коридор и ошиблись всего на 1 см, то наше измерение – образец точности. Важна не только сама абсолютная погрешность, но и та доля, которую она составляет от измеренной величины. В первом примере абс. погрешность 1 см составляет 1/15 долю измеряемой величины или 7%, во втором – 1/2000 или 0.05%. Второе измерение значительно лучше.
Относительной погрешностью называют отношение абсолютной погрешности к абсолютному значению приближенной величины:
.
В отличие от абсолютной погрешности, которая обычно есть величина размерная, относительная погрешность всегда есть величина безразмерная. Обычно ее выражают в %.
При измерении длины в 5 см допущена абсолютная погрешность в 0.1 см. Какова относительная погрешность? (Ответ 2%)
При подсчете числа жителей города, которое оказалось равным 2 000 000, допущена погрешность 100 человек. Какова относительная погрешность? (Ответ 0.005%)
Результат всякого измерения выражается числом, лишь приблизительно характеризующим измеряемую величину. Поэтому при вычислениях мы имеем дело с приближенными числами. При записи приближенных чисел принимается, что последняя цифра справа характеризует величину абсолютной погрешности.
Например, если записано 12.45, то это не значит, что величина, характеризуемая этим числом, не содержит тысячных долей. Можно утверждать, что тысячные доли при измерении не учитывались, следовательно, абсолютная погрешность меньше половины единицы последнего разряда: . Аналогично, относительно приближенного числа 1.283, можно сказать, что абсолютная погрешность меньше 0.0005: .
Приближенные числа принято записывать так, чтобы абсолютная погрешность не превышала единицы последнего десятичного разряда. Или, иначе говоря, абсолютная погрешность приближенного числа характеризуется числом десятичных знаков после запятой.
Как же быть, если при тщательном измерении какой-нибудь величины получится, что она содержит целую единицу, 2 десятых, 5 сотых, не содержит тысячных, а десятитысячные не поддаются учету? Если записать 1.25, то в этой записи тысячные не учтены, тогда как на самом деле мы уверены, что их нет. В таком случае принято ставить на их месте 0, – надо писать 1.250. Таким образом, числа 1.25 и 1.250 обозначают не одно и то же. Первое – содержит тысячные; мы только не знаем, сколько именно. Второе – тысячных не содержит, о десятитысячных ничего сказать нельзя.
Сложнее приходится при записи больших приближенных чисел. Пусть число жителей деревни равно 2000 человек, а в городе приблизительно 457 000 жителей. Причем относительно города в тысячах мы уверены, но допускаем погрешность в сотнях и десятках. В первом случае нули в конце числа указывают на отсутствие сотен, десятков и единиц, такие нули мы назовем значащими; во втором случае нули указывают на наше незнание числа сотен, десятков и единиц. Такие нули мы назовем незначащими. При записи приближенного числа, содержащего нули надо дополнительно оговаривать их значимость. Обычно нули – незначащие. Иногда на незначимость нулей можно указывать, записывая число в экспоненциальном виде (457*10 3 ).
Сравним точность двух приближенных чисел 1362.3 и 2.37. В первом абсолютная погрешность не превосходит 0.1, во втором – 0.01. Поэтому второе число выглядит более точным, чем первое.
Подсчитаем относительную погрешность. Для первого числа ; для второго . Второе число значительно (почти в 100 раз) менее точно, чем первое. Получается это потому, что в первом числе дано 5 верных (значащих) цифр, тогда как во втором – только 3.
Сколько значащих (верных) цифр в следующих числах:
0.75 (2), 12.050 (5), 1875*10 5 (4), 0.06*10 9 (1)
Оценить относительную погрешность следующих приближенных чисел:
нули значащие: 21000 (0.005%),
Нетрудно заметить, что для примерной оценки относительной погрешности числа достаточно подсчитать количество значащих цифр. Для числа, имеющего только одну значащую цифру относительная погрешность около 10%;
с 2-мя значащими цифрами – 1%;
с 3-мя значащими цифрами – 0.1%;
с 4-мя значащими цифрами – 0.01% и т.д.
При вычислениях с приближенными числами нас будет интересовать вопрос: как, исходя из данных приближенных чисел, получить ответ с нужной относительной погрешностью.
Часто при этом все исходные данные приходится брать с одной и той же погрешностью, именно с погрешностью наименее точного из данных чисел. Поэтому часто приходится более точное число заменять менее точным – округлять.
округление до десятых 27.136 » 27.1,
округление до целых 32.8 » 33.
Правило округления: Если крайняя левая из отбрасываемых при округлении цифр меньше 5, то последнюю сохраняемую цифру не изменяют; если крайняя левая из отбрасываемых цифр больше 5 или если она равна 5, то последнюю сохраняемую цифру увеличивают на 1.
округлить до десятых 17.96 (18.0)
округлить до сотых 14.127 (14.13)
округлить, сохранив 3 верные цифры: 83.501 (83.5), 728.21 (728), 0.0168835 (0.01688).