Что нашли в адронном коллайдере

На Большом адронном коллайдере открыли новую частицу материи

Что нашли в адронном коллайдере

Российские ученые, участвующие в коллаборации LHCb на Большом адронном коллайдере, объявили об открытии новой частицы — экзотического тетракварка Tcс+, представляющего собой новую форму материи. Об этом сообщается в пресс-релизе на сайте CERN.

Тетракварк Tcс+ представляет собой единственную известную науке частицу, состоящую из четырех кварков, сразу два из которых являются очарованными (с-кварки), но при этом отсутствуют очарованные антикварки. Очарованием называется аромат — квантовое число, характеризующее тип кварка (всего известно шесть разных «сортов» кварков). При этом время жизни нового тетракварка примерно в 10-500 раз больше, чем у частиц с похожей массой, что делает тетракварк Tcс+ рекордсменом-долгожителем.

Изначально считалось, что адроны (составные частицы) могут состоять только либо из трех кварков, как протоны и нейтроны, либо из кварка и антикварка. Однако более полувека назад физики предположили, что существуют адроны, состоящие из четырех (тетракварки) или пяти кварков (пентакварки). Уже экспериментально доказано существование четырех пентакварков и 20 тетракварков. Тетракварк Tcс+ состоит из двух тяжелых очарованных кварков, что обозначается как сс, и двух антикварков с ароматами u (верхний) и d (нижний). Ранее известные тетракварки обладали скрытым очарованием, то есть в их составе имеется очарованный кварк и очарованный антикварк.

По словам ученых, именно наличие двух тяжелых кварков делает частицу относительно стабильной и долгоживущей. Если вместо с-кварков в ней находились b-кварки (прелестные кварки), то время жизни частицы станет еще дольше и может составить 10 в минус 13-й степени секунды.

Источник

Открытия, сделанные в Большом адронном коллайдере

Что нашли в адронном коллайдере

Специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком.

Большой адронный коллайдер (Large Hadron Collider, LHC) — ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов).

Что нашли в адронном коллайдере

10 сентября 2008 года был произведен официальный запуск коллайдера.

Вскоре после запуска ускоритель вышел из строя и был остановлен до весны 2009 года.

21 октября 2008 года в одном из зданий ЦЕРН в Женеве прошла церемония официального открытия большого адронного коллайдера, которую было решено провести, несмотря на проблемы с запуском.

В 2013 году БАК приостановил свою работу на плановый ремонт и в апреле 2015 года вновь запущен для работы. После запланированного ремонта БАК почти в два раза увеличил свою мощность с 8 до 13 ТэВ, что, по мнению ученых, может привести к новым крупным открытиям.

Запланированная мощность БАК составляет 14 ТэВ, однако она еще ни разу не была достигнута в ходе работы коллайдера.

4 июля 2012 года, после трех лет экспериментов на Большом адронном коллайдере физики ЦЕРНа объявили об открытии «частицы, по своим параметрам очень похожей на бозон Хиггса». Они установили, что масса новой частицы составляет 125-126 гигаэлектронвольт (неопределённость связана с погрешностью измерений). Она не имеет электрического заряда и нестабильна.

Найденная частица проявляла себя наиболее четко в двух самых чистых каналах распада: это распад на два фотона и распад на два Z-бозона с их последующим распадом на четыре лептона (электрона или мюона). Поиски велись еще в трех каналах распада, но из-за больших статистических погрешностей и сильного фона заметить проявления бозона Хиггса в них не удавалось.

На тот момент ученым не было в точности ясно, насколько открытая ими частица соответствует предсказаниям Стандартной модели. К марту 2013 года физики получили достаточно данных о частице, чтобы официально объявить, что это бозон Хиггса.

8 октября 2013 года британскому физику Питеру Хиггсу и бельгийцу Франсуа Энглеру, открывшему механизм нарушения электрослабой симметрии (благодаря этому нарушению элементарные частицы могут иметь массу), была присуждена Нобелевская премия по физике за «теоретическое открытие механизма, который обеспечил понимание происхождения масс элементарных частиц».

В декабре 2013 года, благодаря анализу данных с помощью нейронных сетей, физики ЦЕРНа впервые зафиксировали следы распада бозона Хиггса на фермионы — тау-лептоны и пары b-кварк и b-антикварк.

В июне 2014 года ученые, работающие на детекторе ATLAS, после обработки всей накопленной статистики, уточнили результаты измерения массы хиггсовского бозона. По их данным масса бозона Хиггса равна 125,36 ± 0,41 гигаэлектронвольт. Это практически совпадает — как по значению, так и по точности — с результатом ученых, работающих на детекторе CMS.

В февральской 2015 года публикации в журнале Physical Review Letters физики заявили, что возможной причиной практически полного отсутствия антиматерии во Вселенной и преобладания обычной видимой материи могли послужить движения поля Хиггса – особой структуры, где «живут» бозоны Хиггса. Российско-американский физик Александр Кусенко из университета Калифорнии в Лос-Анджелесе (США) и его коллеги полагают, что им удалось найти ответ на эту вселенскую загадку в тех данных, которые были собраны Большим адронным коллайдером во время первого этапа его работы, когда был обнаружен бозон Хиггса, знаменитая «частица бога».

14 июля 2015 года стало известно, что специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком. Изучение свойств пентакварков позволит лучше понять, как устроена обычная материя. Возможность существования пентакварков предсказали сотрудники Петербургского института ядерной физики имени Константинова Дмитрий Дьяконов, Максим Поляков и Виктор Петров.

Данные, собранные БАК на первом этапе работы, позволили физикам из коллаборации LHCb, занимающейся поиском экзотических частиц на одноименном детекторе, «поймать» сразу несколько частиц из пяти кварков, получивших временные имена Pc(4450)+ и Pc(4380)+. Они обладают очень большой массой – около 4,4-4,5 тысячи мегаэлектронвольт, что примерно в четыре-пять раз больше, чем аналогичный показатель для протонов и нейтронов, а также достаточно необычным спином. По своей природе они представляют собой четыре «нормальных» кварка, склеенных с одним антикварком.

Статистическая достоверность открытия составляет девять сигма, что эквивалентно одной случайной ошибке или сбою в работе детектора в одном случае на четыре миллиона миллиардов (10 в 18 степени) попыток.

Одной из целей второго запуска БАК станет поиск темной материи. Предполагается, что обнаружение такой материи поможет решить проблемы скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Материал подготовлен на основе информации РИА Новости и открытых источников

Источник

На Большом адронном коллайдере открыли новую форму материи. Почему ученые не понимают, с чем они столкнулись?

Что нашли в адронном коллайдере

Большой адронный коллайдер. Фото: globallookpress.com

При участии российских физиков в ЦЕРН обнаружили новую частицу — экзотический тетракварк Tcс+, представляющий собой новую форму материи. В коллаборацию LHCb, которая сделала открытие, входят Институт ядерной физики имени Г.И. Будкера Сибирского отделения РАН, Новосибирский государственный университет, Институт теоретической и экспериментальной физики имени А.И. Алиханова и другие организации. «Лента.ру» рассказывает о научном достижении и о том, что оно значит для физики частиц в целом.

Очарованные и прелестные

LHCb — это один из четырех детекторов, установленных на Большом адронном коллайдере, который предназначен для изучения физики прелестных кварков (b-кварков) и нарушения CP-симметрии при взаимодействии между этими кварками. CР-симметрией называют неизменность законов физики при замене всех частиц на античастицы при одновременном зеркальном отражении физических процессов. Считается, что некоторые частицы не соблюдают СР-симметрию, и это может объяснять, почему во Вселенной материя преобладает над антиматерией. Помимо основной задачи, детектор LHCb также задействован в экспериментах с очарованными кварками (с-кварками).

Что нашли в адронном коллайдере

Что нашли в адронном коллайдере

Тетракварки являются экзотическими мезонами, то есть частицами, в которых число кварков равно числу антикварков. Экзотическими их называют потому, что изначально предполагалось существование частиц, состоящих либо из трех кварков, как протоны и нейтроны, либо из кварка и антикварка. В своих фундаментальных работах 1964 года физики Мюррей Гелл-Манн и Джордж Цвейг, в которых они предложили кварковую модель, упомянули возможность добавления кварк-антикварковой пары к минимальной мезонной или барионной кварковой конфигурации для образования адронов с четырьмя (тетракварк) или пятью (пентакварк) кварковыми составляющими. При этом считалось, что состав тетракварков всегда соответствует формуле qq’QQ’, где q — это легкий кварк (верхний, нижний или странный), а Q — тяжелый кварк (очарованный или прелестный); апострофы обозначают соответствующие антикварки (легкие или тяжелые).

Физикам потребовалось 50 лет, чтобы получить однозначные экспериментальные доказательства существования экзотических адронов. В апреле 2014 года коллаборация LHCb опубликовала измерения, которые продемонстрировали, что частица Z (4430), впервые обнаруженная коллаборацией Belle, состоит из четырех кварков (ccud). Затем в июле 2015 года на Большом адронном коллайдере произошел поворотный момент в спектроскопии экзотических барионов, когда коллаборация LHCb сообщила о признаках существования пентакварков.

Считается, что первым экспериментально обнаруженным тетракварком стал Zc(3900), открытый в 2013 году сразу двумя независимыми научными коллективами на китайском электрон-позитронном коллайдере в BEPC II и в японской лаборатории Организации по изучению высокоэнергетических ускорителей. В 2015 году анализ распада лямбда-барионов, содержащих в своем составе один прелестный кварк (прелестные лямбда-барионы), раскрыл существование пентакварков — экзотических частиц, состоящих из пяти кварков. С тех пор экспериментально доказано существование 20 тетракварков и четырех пентакварков.

Что нашли в адронном коллайдере

Устройство детектора LHCb

В июле 2020 года физики LHCb объявили о возможном открытии тетракварка с четырьмя очарованиями. До этого момента все известные экзотические частицы содержали пару очарованный кварк или очарованный антикварк или прелестный кварк и прелестный антикварк. В августе 2020 года впервые открыли тетракварк cdus с открытым очарованием, а в марте 2021 года — тетракварк со скрытым очарованием и странным кварком. О скрытом очаровании говорят, когда в составе адрона имеются очарованный кварк и очарованный антикварк. При открытом очаровании частицы не содержат очарованных антикварков, чтобы уравновесить очарованные кварки. Аналогичная терминология применяется к другим ароматам кварков.

На пике открытия

Новая частица проявила себя в виде узкого пика в спектре масс распада π+-мезона со статистической значимостью, превышающей 20 стандартных отклонений, что однозначно указывает на открытие. Физики проанализировали полный набор данных, полученных при сеансах работы коллайдера Run 1 и Run 2.

Тетракварк Tcс+, или ccud представляет собой единственную известную науке частицу, состоящую из четырех кварков, сразу два из которых являются очарованными (с-кварки), но при этом отсутствуют очарованные антикварки. Вместо них содержатся два антикварка с ароматами u (верхний) и d (нижний). То есть данная частица имеет открытое очарование и выходит за рамки традиционной схемы образования адронов, обнаруживаемой в мезонах и барионах. При этом время жизни нового тетракварка примерно в 10-500 раз больше, чем у частиц с похожей массой, что делает тетракварк Tcс+ рекордсменом-долгожителем.

Что нашли в адронном коллайдере

Пик, соответствующий открытой частице

Все наблюдавшиеся экзотические адроны распадаются за счет сильного взаимодействия. Долгоживущая экзотическая частица, стабильная по отношению к сильному взаимодействию, заинтриговала бы сообщество физиков элементарных частиц. Адрон с двумя тяжелыми кварками и двумя легкими антикварками — главный кандидат. Однако до сих пор было неясно, будет ли такая частица существовать.

Ситуация изменилась четыре года назад, когда коллаборация LHCb обнаружила барион, содержащий два очарованных кварка и один верхний кварк. Это наблюдение позволило предсказать существование стабильного тетракварка bbud с двумя прелестными кварками. Долгожданное открытие на этой неделе показывает, что ccud также существует, что дополнительно подтверждает существование тетракварка bbud, устойчивого к сильным и электромагнитным взаимодействиям.

Атом или молекула

Физики предполагают две возможности взаимодействия кварков внутри тетракварка. Кварки могут быть тесно взаимосвязаны друг с другом или представлять собой тесно взаимодействующие мезоны. Иными словами, в первом случае экзотическая частица может быть больше похожа на «атом», который имеет очень маленькое и тяжелое ядро, состоящее из двух очарованных кварков и окруженное облаком очень большого размера из легких антикварков. Или же она является «молекулой», в которой две тяжелые частицы D0 и D*+ вращаются друг вокруг друга на расстоянии примерно в восемь-десять раз больше размера каждой из этих частиц.

Что нашли в адронном коллайдере

Поскольку пик в спектре масс распада π+-мезона близок к порогу, соответствующему массе пары очарованных мезонов D*+ D0, можно предположить, что наиболее вероятен вариант с «молекулой», хотя реальная природа этой близости пока остается загадкой, и она не исключает мультикварковую «атомную» структуру. Кроме того, существует загадочная частица χc1(3872), которая по массе тоже близка сумме масс очарованных мезонов. Сходство масс χc1(3872) и Tcс+ может указывать на глубокую, но еще не изученную связь между двумя частицами.

На этой неделе на конференции коллаборации LHCb было объявлено о наблюдении еще двух адронов, Ξb(6327)0 и Ξb(6330)0. Таким образом, к списку адронов, обнаруженных на Большом адронном коллайдере, были добавлены еще три адрона, в результате чего общее количество обнаруженных адронов достигло 62.

Источник

Кажется, на Большом адронном коллайдере неожиданно нашли новую частицу

Гигантский ускоритель в Европе указал в направлении экзотической частицы, которой не должно быть по известным законам физики, пишет Scienitifc American. Небольшой всплеск на диаграмме из нескольких частиц поднял на уши мир физики. Ученые Большого адронного коллайдера (БАК) в Швейцарии, крупнейшего ускорителя частиц на Земле, на днях сообщили, что их агрегат мог произвести совершенно новую частицу, которой в Стандартной модели просто нет.

Что нашли в адронном коллайдере

Такие результаты ученые сделали на основе анализа данных, которые собирались с апреля по ноябрь, после того как БАК начал сталкивать протоны с удвоенной энергией после модернизации. Пока ученые не считают данные слишком убедительными — многие подозревают, что этот всплеск можно отнести на счет статистической погрешности. И все же после обнаружения появилось не меньше десятка научных работ, которые могли бы объяснить теоретическую частицу, а физики по всему миру зачесали головы в два раза интенсивнее.

Что нашли в адронном коллайдере

«Этого мы ждали уже давно, — говорит Адам Фальковский, физик Института теоретической физики в Варшаве и член теоретической группы CERN. — Конечно, мы подозреваем, что ничего не найдем. На моем веку это первый крупный и довольно надежный сигнал физики за пределами Стандартной модели, что уже само по себе круто». Другие эхом повторяют, что спешить некуда: «Экстраординарные заявления требуют экстраординарных доказательств, а здесь этого нет», — пишет физик Колумбийского университета Питер Войт.

Если БАК действительно видел новую частицу, придется ответить на вопрос: что это? По сигнатуре БАК, частица должна весить порядка 750 ГэВ, в 750 раз больше массы протона, и попадает в класс бозонов, а ее спин имеет целое значение. Некоторые теоретики говорят, что новоприбывший похож на тяжелого братца бозона Хиггса, который, кстати, тоже сперва проявился на БАК как любопытный всплеск в данных порядка четырех лет назад. Либо это может быть портальная частица из области темной материи — поскольку она распадается почти сразу, то вряд ли ее можно отнести конкретно к темной материи, повсеместно присутствующей в космосе, но она может быть посланником, который связан с темной материей, полагают теоретики. Другая гипотетическая альтернатива заключается в том, что это гравитон, предсказанная частица-переносчик гравитационной силы.

«Есть длинный список возможных вещей за пределами того, что включает Вселенная и что известно нам, — говорит Джим Ольсен, физик Принстонского университета, представивший результаты CMS. — До сегодняшнего дня ни одна теория на бумаге не предполагала, что мы это найдем». Многие ученые надеются, что БАК найдет подтверждение теории суперсимметрии, которая предсказывает существование многих дополнительных «партнеров» уже известных нам частиц. Однако частица в 750 ГэВ вряд ли будет одной из таких. «Даже если этот сигнал подтвердится, он совсем не обязательно укажет нам на суперсимметрию», — говорит Питер Грэм, теоретик Стэнфордского университета.

Самое любопытное в этих результатах, по словам ученых, то, что два эксперимента на БАК — ATLAS и CMS — использующие различные настройки и проводящие совершенно отдельные анализы независимых наборов данных, увидели почти одно и то же. «Это значительный успех одного только ATLAS и интересно само по себе, но дополнительной уверенности придает тот факт, что два эксперимента увидели это одновременно, — говорит Фальковский. — Это уменьшает шансы на случайную флуктуацию, причем существенно».

Что нашли в адронном коллайдере

Сигнал ATLAS увидел примерно на 10 частиц больше от ожидаемого «фона» — обычных частиц в пределах стандартных ожиданий — после миллиарда протонных столкновений. CMS увидел примерно три. Эти результаты могут показаться скудными, но эксперименты настолько чувствительны и число частиц любой массы настолько точно спрогнозировано, что и эти результаты будут статистически значительными. И хотя это «не открытие — это потенциальное открытие», говорит Ольсен.

Нетерпеливым физикам не придется долго ждать, чтобы узнать правду. Данные, которые поступят с БАК в следующем году, должны либо подтвердить, либо опровергнуть новую частицу. «Я определенно надеюсь, что мы получим что-то интересное в будущее, но мы не знаем, — говорит Блум. — Если эти результаты будут первыми намеками на это, через несколько лет мы вспомним сегодняшний день и скажем: вот тогда-то мы и начали видеть первые проблески. Я думаю, это что-то вроде тизера».

Источник

Не только бозон Хиггса: что еще нашли в Большом адронном коллайдере

В этом году адронным коллайдерам исполнилось 50 лет. 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings. За последние 10 лет на Большом адронном коллайдере открыты 50 новых частиц, а не только известный бозон Хиггса. Рассказываем, что это за частицы.

Читайте «Хайтек» в

Сколько новых частиц открыты на Большом адронном коллайдере?

Самым известным открытием, конечно же, является бозон Хиггса. Менее известен тот факт, что за последние 10 лет эксперименты на БАК (Большом адронном коллайдере) также обнаружили более 50 новых частиц, называемых адронами. По совпадению, число 50 появляется в контексте адронов дважды, поскольку в 2021 году исполняется 50 лет адронным коллайдерам: 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings, что сделало его первым ускорителем в мире. История возникновения столкновений между двумя противоположно вращающимися пучками адронов.

Что такое адроны?

Так что же это за новые адроны, которых всего 59? Давайте начнем с самого начала: адроны не являются элементарными частицами — физики знают это с 1964 года, когда Мюррей Гелл-Манн и Джордж Цвейг независимо друг от друга предложили то, что сегодня известно как модель кварков. Она представила адроны как составные частицы, состоящие из новых типов элементарных частиц — кварков.

Кварки рождаются свободными, но встречаются только связанными…

Фрэнк Вилчек,
лауреат Нобелевской премии по физике за за открытие асимптотическое свободы в теории сильных взаимодействий, 2004 г.

Сам термин «адрон» происходит от греческого «хадрос» («сильный») и отражает свойство адронов участвовать в сильных взаимодействиях. Это короткодействующие фундаментальные взаимодействия, связывающие кварки внутри нуклонов и других адронов. Сила этого взаимодействия намного превосходит силу трех других фундаментальных взаимодействий — электромагнитного, слабого и гравитационного.

Что нашли в адронном коллайдере

Адроны — связанные системы кварков и антикварков. Они существуют двух типов — барионы и мезоны.

Что нашли в адронном коллайдере

Как появляются новые адроны?

Но точно так же, как исследователи все еще открывают новые изотопы спустя 150 лет после того, как Менделеев создал периодическую таблицу, исследования возможных составных состояний, образованных кварками, все еще являются активной областью физики элементарных частиц.

Причина этого кроется в квантовой хромодинамике, или КХД, теории, описывающей сильное взаимодействие, которое удерживает кварки вместе внутри адронов. У этого взаимодействия есть несколько любопытных особенностей, включая тот факт, что сила взаимодействия не уменьшается с расстоянием. Это приводит к свойству, которое запрещает существование свободных кварков вне адронов — ограничение цвета. Такие особенности делают эту теорию очень сложной с математической точки зрения.

Что нашли в адронном коллайдере

Фактически до настоящего времени само ограничение цвета не было доказано аналитически. И у ученых до сих пор нет способа точно предсказать, какие комбинации кварков могут образовывать адроны.

Что мы знаем об адронах?

Еще в 1960-х годах было уже более 100 известных разновидностей адронов. Их обнаружили в экспериментах на ускорителях и в экспериментах с космическими лучами. Модель кварков позволила физикам описать весь «зоопарк» как разные составные состояния всего трех разных кварков: верхнего, нижнего и странного. Все известные адроны могут быть описаны либо как состоящие из трех кварков (образующих барионы), либо как кварк-антикварковые пары (образующие мезоны). Но теория также предсказывала другие возможные устройства кварков.

Уже в оригинальной статье Гелл-Манна о кварках 1964 года идея частиц, содержащих более трех кварков, считалась возможной. Сегодня ученые знают, что такие частицы действительно существуют. И все же потребовалось несколько десятилетий, чтобы экспериментально подтвердить первые четырехкварковые и пятикварковые адроны, или тетракварки и пентакварки.

Полный список из 59 новых адронов, обнаруженных на БАК, показан на изображении ниже.

Что нашли в адронном коллайдере

Некоторые из этих частиц являются пентакварками, некоторые — тетракварками, а некоторые — новыми (возбужденными) состояниями барионов и мезонов с более высокой энергией.

Что нашли в адронном коллайдере

Открытие этих новых частиц вместе с измерениями их свойств по-прежнему дает важную информацию для проверки границ кварковой модели. В свою очередь, это позволяет исследователям углубить понимание сильного взаимодействия, проверить теоретические предсказания и настроить модели. Стоит отметить, что это особенно важно для исследований, проводимых на БАК. Дело в том, что сильное взаимодействие отвечает за большинство того, что происходит при столкновении адронов. Чем лучше ученые поймут сильное взаимодействие, тем точнее будет моделирование этих столкновений. В итоге шансы увидеть небольшие отклонения от ожиданий, которые могут намекать на возможные новые физические явления, вырастут.

Первый адрон, открытый на БАК (LHC), χb (3P), был открыт ATLAS, а самые последние включают новый возбужденный красивый странный барион, наблюдаемый CMS, и четыре тетракварка, обнаруженные LHCb.

Стандартная модель — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Современная формулировка была завершена в середине 70-х годов после экспериментального подтверждения существования кварков.

Фермион — частица или квазичастица с полуцелым значением спина, собственного момента импульса элементарных частиц.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *