Что находится внутри смартфона
Как это устроено. Внутренняя компоновка
Макс Любин
Привет. Сегодня мы продолжим исследовать внутренности мобильных устройств, в частности, смартфонов. В сегодняшнем материале речь пойдет про особенности компоновки элементов внутри смартфона, а также организацию внутреннего пространства у различных производителей. Это будет не исчерпывающая информация, а мое субъективное мнение, с которым вы вольны не соглашаться.
Только начав заниматься ремонтом мобильных телефонов, набираясь опыта, столкнулся с тем, что разные производители по-разному используют внутреннее пространство и по-разному распределяют платы, шлейфы, крепления внутри аппаратов. На данный момент выделил для себя пять основных видов внутренней компоновки устройств.
Китайцы, или «всё на соплях».
Вариант компоновки, применяемый в недорогих китайских устройствах, для которого характерно массовое использование проводов, шлейфов, а также островное расположение элементов. Плюсом такого расположения является простота замены отдельных компонентов без необходимости пайки. Минус – невысокая жесткость конструкции ввиду экономии на материалах и наплевательского отношения к просчету жесткости. При таком размещении несущими элементами корпуса становятся части телефона, не предназначенные для этого. Например, несущим элементом, на который крепится электроника, может являться дисплей. Последнее время подобная компоновка встречается только на совсем бюджетных устройствах, так как уважающие себя китайцы начали уделять внимание расчету конструкции. Хорошо, что подобные устройства благополучно вымирают.
«Старая школа».
Наиболее характерна для устройств Motorola. Особенность такой компоновки заключается в том, что инженеры Motorola многие годы при разработке устройств руководствуются принципом «текстолита не жалко». Выражается это в том, что материнская (основная) плата смартфона занимает почти всю внутреннюю площадь устройства. Из-за этого аккумуляторы в смартфонах от Moto плоские и тонкие при сравнимой емкости, по площади больше АКБ других производителей. Например, АКБ из Moto X 2014 в сравнении с АКБ от Samsung Galaxy S3 (емкость сравнимая).
Любопытная особенность состоит в том, что в таком случае сама плата является частью несущего каркаса, обеспечивая жесткость корпуса. С одной стороны, решение спорное, так как плата – вещь весьма нежная и очень не любит изгибов, с другой стороны, годы использования такой конструкции доказали, что она имеет право на жизнь. А еще, судя по всему, в Moto очень не любят делать отверстия в плате и контактные шлейфы. Иначе чем объяснить тот факт, что даже динамики не подключены шлейфом, а опираются контактами прямо на плату.
Нет. Совсем без шлейфов обойтись не удается, и там, где это уместно, такой вариант подключения используется, однако делить плату на части в Moto вот уже много лет не хотят.
Вообще, устройства от Moto всегда производили впечатление надежных и ладно собранных. Много винтов (не так много, конечно, как в iPhone), много крепежных элементов.
При такой конструкции есть один неявный минус – при деформации корпуса от удара и замене, например, дисплейного модуля восстановить геометрию корпуса оказывается сложно.
В конечном итоге это может стать причиной внутренних напряжений после сборки, которые могут привести к повреждениям даже при слабых нагрузках на собранное устройство.
Модульная конструкция типа «Я люблю шлейфы!».
Характерна для многих производителей и отличается тем, что разные модули устройства соединены гибкими шлейфами, которые могут пронизывать внутренности аппарата в самых неожиданных местах. Подобные конструкции очень любят, например, в Sony, HTC.
И если HTC ограничивается шлейфоманией, то Sony любит загадывать мастерам ребусы в виде не самого простого процесса извлечения материнской платы из корпуса.
Плюсом такой конструкции, как и у «всё на соплях», может являться относительная простота замены отдельных модулей. Однако проблем добавляет не самое логичное расположение этих самых шлейфов. Вернее, расположение, на самом деле, логичное, однако назвать его удобным для разборки вряд ли повернется язык. Например, в аппаратах Sony шлейфы могут находиться как над АКБ, так и одновременно под АКБ. При этом некоторые шлейфы очень хрупкие и имеют сложную геометрию.
Не отстает и LG с ее любовью пускать шлейфы через весь корпус.
А еще бывают витиевато упрятаны в элементы корпуса, и тогда разборка устройства превращается в квест.
Модульная конструкция по типу «модули, винты и клей».
Наиболее характерным представителем этого типа является корейский производитель Samsung. Корейцы вот уже в нескольких поколениях устройств остаются верны себе, деля внутренние элементы на две части – основная плата и нижняя плата. Кроме этого, при подобной конструкции основной вид соединения модулей – разъемы и минимум проводов. Доступ к плате чаще всего несложный и проходит весьма быстро. Всё было бы замечательно, если бы не один нюанс – клей! Корейцы фанатеют от клея и заливают им дисплейный модуль вместе с навигационными кнопками и кнопкой home, что делает замену этих элементов крайне трудоемкой.
Шлейфы кнопок не заменить без снятия дисплейного модуля.
Судя по всему, корейцы считают, что дисплейный модуль в последних поколениях устройств можно и нужно менять только в сборе с рамой, нижней платой и кучей других элементов. Не самый очевидный выход, но в условиях общества потребления и в век одноразовых вещей наиболее оправданный с точки зрения прибыли и очень неприятный с точки зрения бюджета потребителя.
«Сейф».
В случае с одними производителями это не является проблемой, в случае с другими обещает вам увлекательное времяпрепровождение, которое пройдет под лозунгом «лопнет дисплей или нет». При такой конструкции, если производитель не поскупился на клей (привет, Samsung), даже замена батареи становится нетривиальной задачей, которая может привести к серьезным расходам. Популяризатором такой конструкции стала компания Apple, выпустив iPhone 5 с корпусом в виде алюминиевой ванны, прикрытой дисплеем.
Заключение
В разработке любого электронного устройства участвует большое количество людей самых различных профессий, среди которых и те, кто продумывает внутреннюю компоновку, а также принципы размещения элементов готового изделия. Зачастую именно от этих людей зависит, насколько ремонтопригодным окажется итоговый результат. Есть даже те, кто основой своей деятельности сделал оценку ремонтопригодности устройств, заработав на этом авторитет и деньги. Зачастую, читая выводы подобных ресурсов, внутренне не соглашаюсь со многими пунктами, и хочется выставить свой балл, но это так и остается внутренним ощущением и несогласием.
На самом деле, видов компоновки и вариантов размещения элементов существует гораздо больше. Тут я привел лишь основные, наиболее часто встречавшиеся в процессе ремонта устройств различных производителей. Кроме того, описанное выше – лишь мой субъективный опыт. У каждого мастера, занимающегося ремонтом телефонов, есть свой список любимых и нелюбимых производителей с точки зрения простоты разборки/сборки и ремонта. Был ли у вас опыт ремонта электроники, и какие впечатления остались от этого?
П.С. Я намеренно не описываю устройства Apple, так как это блог об Android.
Из чего состоит смартфон
Каждый смартфон состоит из множества сложных компонентов и вы не всегда будете думать о них перед выбором модели аппарата. Но, тем не менее, важно знать какие аппаратные средства помогают вашему смартфону функционировать.
В этой статье мы разберем основные части того, что стало одним из самых важных электронных устройств на рынке. Рассмотрим из чего состоит смартфон и для чего нужен тот или иной компонент. Сейчас существует множество различных моделей смартфонов, разных конструкций, с разными характеристиками, временем автономной работы и так далее. Но если вы разбираетесь в аппаратной начинке смартфона, то выбрать нужную модель будет намного проще.
Из чего состоит смартфон
1. Дисплей
Жидкокристаллический дисплей использует подсветку для получения изображения. Белый свет проходит сквозь фильтры и благодаря возможности управления свойствами кристаллов вы можете видеть разные цвета. Свет не создается самим экраном, он создается источником света за ним.
2. Аккумулятор
В смартфонах обычно используются литий-ионные аккумуляторы, они могут быть съемными или не съемными. Благодаря этой технологии вам не понадобиться калибровка или тестирование аккумулятора, как при использовании батарей на основе никеля. Тем не менее у этих аккумуляторов есть множество своих проблем.
3. System-on-a-Chip (SoC)
4. Внутренняя и оперативная память
Ни один смартфон не сможет работать без оперативной памяти и системного хранилища. Большинство устройств используют оперативную память LPDDR3 или LPDDR4, а некоторые высококлассные модели поставляются с LPDDR4X. Сочетание LP означает Low Power, напряжение питания этих микросхем снижено, а это делает их более эффективными в плане потребления энергии.
Что касается внутреннего хранилища, то здесь применяется флеш память от 32 до 256 Гб. Требования пользователей постоянно растут и в соответствии с ними будут расти объемы. Когда вы включите телефон, то увидите что размер накопителя меньше чем заявлен. Например, сказано что накопитель на 64 Гб, а для записи доступно 53-55 Гб. Эта память занята операционной системой и приложениями.
5. Модемы
Каждый из производителей пытается выпустить самый быстрый LTE-чип. На данный момент самый быстрый 9-LTE чип, но его нет смысла брать, если ваша сотовая сеть не поддерживает такую скорость.
6. Камера
У всех смартфонов есть фронтальная и передняя камеры. Камеры состоят из трех основных частей:
Количество мегапикселей камеры смартфона по-прежнему остаются очень важным критерием, но теперь это имеет намного меньшее значение. Сейчас основным ограничивающим фактором становится сенсор камеры, а также его чувствительность когда через него проходит свет.
Сенсор может вести себя по-разному в каждом смартфоне, поэтому фото или видео будет иметь разный контраст, оттенки, насыщенность по сравнению с другими смартфонами. Поскольку смартфоны имеют небольшой размер сенсора, они, как правило, плохо работают в условиях слабого освещения.
7. Датчики
В большинство современных смартфонов встроено пять основных датчиков которые позволят использовать смартфон более удобно. Вот они:
Это были все основные элементы смартфона, в различных моделях могут быть и другие датчики, например, датчик пульса, давления и температуры, но они встречаются намного реже.
Выводы
Мы рассмотрели из чего состоит смартфон. Теперь, когда у вас больше информации о сложных компонентах, из которых состоит каждый смартфон, вы можете выбирать вашу будущую покупку сравнивая характеристики различных компонентов. Так вы выберите лучшее устройство, которое будет полностью отвечать вашим потребностям.
Устройство смартфона
ОСНОВНЫЕ ДЕТАЛИ СМАРТФОНА
1. Электронная плата
Или материнская плата. Ее называют основой смартфона, так как именно она отвечает за выполнение его основных функций. Так же, как на стационарном компьютере или любом другом современном электронном устройстве, материнская плата выступает основной деталью всего аппарата. В мобильных устройствах плата представлена как сравнительно небольшая пластина, которая размещена по всему периметру телефона, учитывая площади, отведенные под батарею и экран. Все комплектующие смартфона, интерфейсы, модули, детали крепятся к плате. Благодаря работе электронной платы все элементы устройства работают в нормальном режиме и могут беспрепятственно функционировать между собой. Именно поэтому электронная плата является самой дорогой во всех устройствах.
Процессор занимает не менее значимое по важности место в работе мобильного устройства. Главная его задача лежит в обработке передаваемых данных. Можно сказать, что процессор – это «двигатель» смартфона, главная вычислительная мощность, он отвечает за быстродействие телефона, его адекватную работу, возможность одновременного выполнения нескольких опций так, чтобы при этом операция не отразилась негативным образом на быстродействии.
3. Оперативная память
Ни одно устройство смартфона не обходится без оперативной памяти и модуля постоянной памяти. Это такая же важная деталь для девайса, как и материнская плата, и процессор. Без оперативной памяти смартфон просто не будет работать, так как до того момента, как информация попадает на обработку, она должна быть перемещена из постоянной памяти в оперативную. Не следует преуменьшать и важность постоянной (или временной) памяти – если в устройстве ее нет, то аппарат попросту не сможет обрабатывать данные, передавать их на дисплей и т.д. Все программные компоненты сосредоточены на внутренней памяти, которая может иметь расширение в виде специального слота для карты памяти, объем ее зачастую в несколько раз превышает размер встроенной памяти.
4. Комплектующие или детали корпуса
К ним относится, как правило, клавиатурный блок и, в зависимости от рассматриваемой модели смартфона, моноблок (в устаревших вариантах: слайдер, флип и т.д.)
Его задача заключается в передаче визуальной информации и ориентирования в программном обеспечении. Современные смартфоны сегодня оснащаются очень качественными дисплеями при максимально возможных минимальных размерах, по параметрам разрешения не уступающим большим двадцатидюймовым мониторам привычных ПК. Существует дисплеи, которые: подключаются к материнской плате и дисплеи или припаиваются непосредственно к корпусу. К слову сказать, дисплей является одной из самых дорогих по цене составляющих любого смартфона.
Источник питания смартфона, позволяющий длительный период времени мобильному устройству работать в автономном режиме без подключения к электросети. Сегодня телефоны оснащаются литий-ионными или литий- полимерными батареями. Также, встречаются съемные аккумуляторы и встроенные.
ВТОРОСТЕПЕННЫЕ СОСТАВЛЯЮЩИЕ СМАРТФОНА
1. Динамики, микрофоны и разъем для наушников. Несмотря на то, что данные модули причисляют к второстепенным по важности составляющим, их работа – качественный звук и его воспроизведение играют важную роль в работе телефона. Устройство смартфона современного образца может включать порядка 3-х микрофонов: для разговоров, для записывания звуков на диктофон и для шумопонижения в момент телефонного разговора.
2. Шлейф. С его помощью соединяют подвижные части в мобильных устройствах. В защищенных смартфонах данной детали уделяется особое внимание.
3. Вибромотор. Отвечает за такую привычную всем вибрацию в смартфоне.
4. Антенна. Модуль, отвечающий за передачу сигнала радиостанций. Представлен в виде штырька или пластины внутри корпуса телефона.
В заключение необходимо подчеркнуть, что многофункциональность смартфона, возможность использования его инструментов и приложений – это всего лишь верхушка айсберга в устройстве смартфона. Современное мобильное устройство представляет собой достаточно непростой, с точки зрения электроники и электротехники, аппарат, который, несмотря на очень компактные размеры, объединяет в себе мощный функционал и неплохой потенциал для развития.
Из чего состоит смартфон: 7 основных компонентов
Выбирая в интернет-магазине или просто в специализированном супермаркете очередной смартфон, желательно иметь представление, из чего он на самом деле состоит.
Не в смысле химического состава (хотя и такая информация в сети есть), а в отношении наиболее важных компонентов.
Это нужно для того, чтобы выбрать модель не только в соответствии со своими финансовыми возможностями и эстетическими предпочтениями, но и исходя из реальных потребностей.
Корпус
Современные смартфоны представляют собой настоящее поле битвы за каждый кубический миллиметр объема, потому пластмассовой «мыльницы», в которую упакован дисплей и плата, сегодня среди них не встретить.
Как правило, корпус состоит из рамы, к которой крепится дисплей и прочая начинка, а с тыльной стороны всё это прикрывается защитной панелью.
Первое, что нужно знать о корпусе – это использованные в нем материалы:
Казалось бы, какая разница, из чего сделан телефон? Ведь важно то, что внутри? Ничуть не бывало.
Гаджет, сделанный из дешевых материалов, очень быстро «облезет» и исцарапается, корпус будет немилосердно люфтить, а под стекло дисплея набьется пыль.
Так что во внимание следует принимать не только дизайн корпуса, но и то, из чего он изготовлен.
Чипсет
Среди всех компонентов, из которых состоят любые модели смартфонов, этот – самый важный, можно сказать, сердце. У неискушенных пользователей часто возникает путаница с терминологией, и они обзывают этот элемент процессором.
В действительности это неправильно – корректнее говорить «чипсет» или SoC (System on a Chip), поскольку в данной микросхеме имеется не только два процессора (CPU и графический ускоритель), но и множество периферии, обслуживающей те или иные системы мобильного устройства.
CPU всех современных чипсетов для смартфонов построены на архитектуре ARM, хотя еще несколько лет назад на рынке появлялись модели на SoC Intel, использовавших привычную для пользователей ПК x86.
Основными параметрами, которые стоит принимать во внимание, являются тактовая частота и технология изготовления. На момент написания статьи наиболее совершенные чипсеты были изготовлены по 10 нм технологии и имели тактовую частоту чуть ниже 2,5 ГГц.
Однако уже к концу этого года должны появиться первые устройства на основе SoC Qualcomm Snapdragon 855, который будет работать на частоте 3 ГГц и производиться по 7 нм техпроцессу.
К такому параметру, как количество ядер, нужно относиться с осторожностью, поскольку он далеко не всегда отражает реальную градацию производительности.
Дисплей
Назначение этого элемента очевидно, поэтому мы остановимся на ключевых его характеристиках:
Соотношение сторон имеет тенденцию к увеличению большей из них, например, последние модели флагманов Samsung (и не только) производятся с экранами 18.5:9, тогда как у предыдущего поколения эта величина составляла 16:9, а до этого в моде были еще более «квадратные» аппараты.
Разрешение показывает, как много точек (пикселей) помещается на ширину или высоту экрана. Для наиболее часто употребляемых форматов существуют буквенные наименования. Вот те из них, которые чаще всего встречаются в мобильных устройствах:
Как устроен смартфон?
За несколько десятилетий вычислительные машины стремительно эволюционировали. Многокомнатные релейные, ламповые и транзисторные монстры уступили дорогу куда более совершенным устройствам, собранным из полупроводниковых микросхем. Благодаря миниатюрности, надежности, малому энергопотреблению и невысокой стоимости компьютеры проникли во все сферы быта – от телефонов до стиральных машин. Но развитие на этом не остановилось. И если средневековые схоласты спорили о том, сколько ангелов может поместиться на острие иглы, инженеры будущего наверняка смогут разместить там полнофункциональный мобильный компьютер. Впрочем, и современные достижения микроэлектроники весьма впечатляют.
Высокоинтегрированные системы
Традиционные мобильные платформы, состоящие из микросхем системной логики (чипсета) и процессора, размещенных на системной плате, годятся для ограниченного круга устройств, прежде всего ноутбуков и нетбуков. Однако есть целый класс сверхмобильных аппаратов, которым в качестве платформы требуется нечто более компактное и менее энергопотребляющее. Среди них – планшетные компьютеры, смартфоны, ультракомпактные нетбуки и всевозможные специализированные гаджеты (навигаторы, MP3- и MP4-плееры и т.д.). В основе – сверхмобильная платформа, которая чаще всего представляет собой так называемую систему на кристалле (System-on-a-Chip, SoC). Это в буквальном смысле самодостаточная система, объединяющая разнообразные устройства (процессоры, память, контроллеры интерфейсов и многое другое) и выполненная в виде единой микросхемы (кристалла).
На заметку
Компания Intel обещает уже в ближайшие год-два выпустить специальную серию процессоров Atom для планшетов и смартфонов. Вполне вероятно, что вскоре можно будет без особых проблем запускать на планшетах те же привычные программы, какими мы пользуемся на стационарных ПК и ноутбуках.
Краеугольным камнем SoC является особый центральный процессор со сверхнизким энергопотреблением. В отличие от процессоров для ПК, в которых применяется разработанная Intel архитектура х86, процессоры мобильных платформ в подавляющем большинстве случаев используют архитектуру ARM, позволяющую создавать пусть менее производительные, зато более экономичные и компактные устройства.
Самыми известными производителями процессоров данной архитектуры являются фирмы Qualcomm, Marvell, Apple и Samsung. Их разработки используются не только в мобильных устройствах собственного производства, например Apple iPhone, но и в изделиях сторонних производителей, таких как HTC или Nokia.
НАКОПИТЕЛЬ
В качестве жесткого диска в сверхмобильных системах применяется энергонезависимая NAND или flash-память. Ее преимуществами, в сравнении с типичным накопителем на магнитных дисках, являются сверхкомпактные размеры, низкое энергопотребление и устойчивость к внешним физическим воздействиям (удары, вибрация), что особенно важно для мобильных устройств, учитывая обычные условия их эксплуатации.
Объем установленной flash-памяти, как правило, зависит от позиционирования продукта в линейке: 8-16 Гб для бюджетных моделей и десятки гигабайт — для более дорогих имиджевых модификаций.
Во многих мобильных устройствах присутствует дополнительный разъем для установки стандартных карт SD или microSD, что позволяет значительно увеличить доступное пользователю «дисковое» пространство.
Несмотря на жесткие технические ограничения, задаваемые «ультракомпактными» условиями эксплуатации, частоты современных одночиповых систем уже смогли превысить знаковый рубеж 1 ГГц. Такая производительность вовсе не является избыточной – она нужна прежде всего для плавного воспроизведения насыщенного технологией flash-контента – в частности, многих интернет-сайтов.
Расширение платформы
Графические решения, применявшиеся в более ранних и бюджетных моделях медиаплееров и смартфонов, имели недостаточную производительность; поэтому подобные устройства зачастую оснащаются дополнительным медиапроцессором, берущим на себя функции воспроизведения видео.
В ближайшее время ведущими разработчиками ARM-процессоров запланирован массовый переход на двухъядерную архитектуру с дальнейшей перспективой внедрения полноценной многоядерности.
В связке с процессором работает графическое ядро, также разработанное с учетом максимальной экономичности. Впрочем, современные мобильные графические ядра способны не только выводить элементы интерфейса на экран, но и воспроизводить видео стандартов высокой четкости (HD-видео), а также брать на себя расчеты сложной трехмерной графики, использующейся в разнообразных популярных 3D-играх.
Хотя новейшие решения класса ARM Mali 400, NVIDIA GeForce ULP (Tegra 2) или Imagination PowerVR SGX540 по своим графическим и иным возможностям уступают настольным аналогам, однако вполне сопоставимы с видеопроцессорами, применяющимися в таких популярных игровых приставках, как Microsoft Xbox 360 и Sony PlayStation 3. Недаром в последнее время появилось множество динамичных трехмерных игр с впечатляющей графикой и сложными спецэффектами.
СРЕДСТВА СВЯЗИ
Фактически обязательным элементом сверхмобильных платформ стали сетевые интерфейсы, проводные и (или) беспроводные – в частности, 100 Мбит/1 Гбит Ethernet, Wi-Fi стандартов 802.11b/g/n и Bluetooth. За них отвечает отдельный сетевой контроллер, как правило, разработки Broadcom или Atheros.
Поддержка беспроводной сети Wi-Fi позволяет, при наличии точки доступа, легко интегрировать мобильный гаджет в домашнюю сеть и обмениваться данными между ним и основными устройствами (настольный ПК, ноутбук, домашний файловый сервер или NAS). А в некоторых заведениях – например, гостиницах, залах ожидания в аэропортах, интернет-кафе и закусочных McDonald’s, – есть бесплатная услуга выхода в Интернет.
В отличие от медиаплееров, смартфоны и некоторые планшеты дополнительно оснащаются модулями GSM/GPRS, позволяющими совершать звонки, используя сотовую связь, или самостоятельно выходить в Сеть.
Системы, предназначенные для использования в GPS-навигаторах, а также смартфоны с аналогичной функцией дооснащаются GPS-приемником, обеспечивающим связь с навигационными спутниками NAVSTAR.
ОПЕРАТИВНАЯ ПАМЯТЬ
Как в любой компьютерной системе, одним из обязательных элементов SoC является оперативная память. Преимущественное распространение получил тип памяти LPDDR (Low Power Double Data Rate – память с низким энергопотреблением и удвоенной скоростью передачи данных). Несмотря на сходство с названиями DDR2 и DDR3, новый тип памяти несовместим с этими стандартами напрямую из-за примененных в LPDDR многочисленных микроархитектурных решений, призванных существенно снизить энергопотребление.
Типичный объем оперативной памяти в современных мобильных устройствах за последнее время существенно возрос (с 128 до 512 Мб–1 Гб) и фактически соответствует объему ОЗУ настольных ПК трех-четырехлетней давности, позволяя использовать новейшие мобильные операционные системы и приложения, которые по своей функциональности мало в чем уступают настольным аналогам.
ДИСПЛЕИ
В современных гаджетах применяются сенсорные дисплеи двух типов: емкостные и резистивные. Первые обладают более высокой прозрачностью и, следовательно, требуют менее мощной подсветки для обеспечения высокой яркости и контрастности – это положительно сказывается на энергопотреблении, позволяя увеличить время автономной работы мобильного устройства. Кроме того, емкостные экраны лучше реагируют на легкое касание пальцем, тогда как для четкого срабатывания резистивного экрана требуется некоторое усилие при нажатии – оптимальным является ввод с помощью стилуса. Впрочем, в 2008 году компания HTC разработала и запатентовала электронное перо для работы с емкостными экранами, специально предназначенное пользователям, привыкшим к управлению с помощью стилуса и не желающим переходить на «пальцевый» метод.
Дополнительным преимуществом емкостных экранов является возможность определения нескольких нажатий сразу (технология Multitouch). Типичный размер экрана для планшета составляет 7–10 дюймов (18–25 см) по диагонали, с разрешающей способностью от 800х480 до 1280×800 точек. У смартфонов и медиаплееров диагональ равна, как правило, 3–4 дюймам (7–10 см), а разрешение экрана варьируется от скромных 320х200 до впечатляющих 960х640 точек (Retina display в новых iPhone и iPod touch).
ОC ДЛЯ СВЕРХМОБИЛЬНЫХ ПЛАТФОРМ
Несколько слов об операционных системах, используемых в составе высокоинтегрированных мобильных платформ. Одна из старейших мобильных ОС – Symbian – формально является самой авторитетной на рынке, но стремительно теряет популярность под натиском молодых и перспективных конкурентов. По последним статистическим отчетам, быстрее всех распространяется операционная система Android, разработанная и внедряемая компанией Google.
Буквально за два года эта ОС получила широчайшую известность и уверенно отвоевывает позиции в самых разных устройствах: от смартфонов и коммуникаторов до нетбуков и планшетов. И, несмотря на то что новая версия Android с заявленной официальной поддержкой планшетов (Android 3.0 Honeycomb) находится пока в стадии разработки, производители не стесняются использовать в своих устройствах ее смартфонную версию.
Уступает позиции и BlackBerry OS, разрабатываемая компанией Research In Motion (RIM). Впрочем, в выпущенной летом 2010 года версии 6.0 появились многочисленные нововведения (возможность одновременного управления с помощью трекбола, аппаратной клавиатуры и сенсорной панели, обновленный браузер, поддержка HTML5 и др.), с помощью которых производитель надеется догнать конкурентов.
На четвертом месте – операционная система от Apple под названием iOS, получившая массовое распространение благодаря огромной популярности таких мобильных устройств, как iPhone, iPod touch и, конечно, iPad. Раньше продукты Apple считались нишевыми и имиджевыми, предназначались узкой аудитории поклонников «яблочной» фирмы; сегодня же Apple стала законодателем мод, а порой выступает первопроходцем.
Пытается идти в ногу со временем и такой столп программной индустрии, как Microsoft. В 2010 году компания выпустила совершенно новую и перспективную операционную систему Windows Phone 7, призванную заменить теряющую популярность Windows Mobile (к сожалению, русифицированная версия пока не выпущена). Сенсацией стало официальное заявление компании Nokia о прекращении поддержки Symbian и переходе на новую операционную систему от Microsoft.
СОВРЕМЕННЫЕ СИСТЕМЫ НА КРИСТАЛЛЕ
Разработкой систем на кристалле занимаются более десятка крупных фирм, но лишь некоторые из решений получили распространение на быстро растущем рынке мобильных устройств. Как уже упоминалось, в подавляющем большинстве SoC используются процессоры архитектуры ARM. Следует отметить, что производители, как правило, не разрабатывают процессоры самостоятельно, а лицензируют готовые модификации архитектуры у компании ARM. Каждый SoC-процессор собирается индивидуально, под конкретные задачи и условия применения, из готовых блоков-«кубиков», обеспечивающих необходимую функциональность с учетом требуемых характеристик. По такой схеме работают компании Texas Instruments, ST-Ericsson, Samsung, Freescale, Apple.
Собственной разработкой процессоров, помимо «материнской» компании ARM, занимаются Qualcomm (SnapDragon) и Marvell (XScale). Несмотря на то, что в составе новой платформы Tegra 2 еще используется «стандартный» процессор на ядре Cortex, компания NVIDIA недавно приобрела полную (full-custom) лицензию на архитектуру ARM, чтобы иметь возможность создать процессор следующего поколения на основе собственного дизайна. Наиболее актуальными сегодня являются мобильные процессоры на базе ядер ARM11 (применяются в составе Apple iPhone 2G, iPod touch первых двух поколений, HTC Dream, Nintendo 3DS и др.) и Cortex-A8 (iPhone 3GS, iPhone 4, iPad, семейство Samsung Galaxy Tab, Google Nexus S, LG Optimus 2X и др.).
APPLE A4/A5
Начнем рассмотрение возможностей платформ в алфавитном порядке – с компании Apple. До недавнего выхода iPad 2 последним продуктом компании являлась платформа Apple A4. В ее основе – разработанный совместно с Samsung одноядерный процессор S5L8930 на архитектуре ARM Cortex-A8. Частота процессора достигает значения 1000 МГц для iPad и 800 МГц для iPhone 4. Мощности вполне достаточно, чтобы снимать и воспроизводить HD-видео стандарта 720p, обеспечить отзывчивую работу и плавную прорисовку интерфейса.
Платформа поддерживает память типа LPDDR, в одноканальном режиме подключенную по специальной скоростной шине AMBA 3 AXI шириной 64 бит. Типичный устанавливаемый по технологии PoP (в едином корпусе, но не на одном кристалле!) объем памяти 256–512 Мб вполне достаточен для текущих запросов мобильных приложений.
На кристалле также интегрирован видеопроцессор PowerVR SGX 535 от компании Imagination, поддерживающий API OpenGL ES версии 2.0. Данный графический процессор, несмотря на немолодой по современным меркам возраст, способен поддерживать игры с достаточно сложной 3D-графикой и спецэффектами на основе шейдеров второго поколения. Кстати, идентичное идеоядро применялось в одном из первых в мире нетбуков ASUS Eee PC – Intel GMA500 IGP.
В зависимости от модели платформа оснащается сторонними модулями Wi-Fi стандартов 802.11a/b/g/n, Bluetooth 2.1+EDR, GPS и HSDPA/Edge. Для хранения данных и операционной системы в состав платформы входит 8–64 Гб энергонезависимой памяти типа NAND. Традиционно для продукции Apple присутствуют акселерометр, гироскоп, магнитный компас и датчик освещения, управляющий яркостью подсветки. В качестве операционной системы используется только «родная» ОС от Apple – iOS 4 (бывшая iPhone OS).
Кстати, нередко отмечаемые недостатки устройств на данной платформе, отсутствие поддержки технологии Adobe Flash, кард-ридера или USB-порта являются следствием идеологии компании, а отнюдь не техническими недоработками.
В начале марта нынешнего года компания Apple смогла порадовать поклонников выпуском новейшей платформы Apple A5. В данный момент она используется в планшете iPad 2, и, вероятнее всего, на ее основе будут представлены новые iPhone и iPod пятого поколения. Процессор, как и для платформы А4, разрабатывался совместно с компанией Samsung. Он основан на модифицированной архитектуре ARM Cortex A9, имеет частоту 1ГГц и теперь уже два ядра. Память типа LP DDR2 стала работать на более высокой частоте 1066 МГц. В качестве видеопроцессора применяется новый PowerVR SGX543, в несколько раз превосходящий по мощности прежнее решение. Несмотря на значительно возросшую мощность процессора и видеоядра, разработчикам Apple удалось сохранить экономичность платформы на прежнем уровне.
MARVELL ARMADA
Следующей по списку идет SoC-платформа от Marvell. Выкупив в свое время у Intel подразделение XScale, эта компания сегодня одна из немногих самостоятельно занимается проектированием и разработкой процессоров данной архитектуры.
Модельный ряд серий PXA и Armada 100 был весьма популярен у производителей смартфонов и электронных книг, выделяясь среди конкурентов высокой энергоэффективностью, наличием модуля Wireless MMX (аналог NEON) и быстрой 2D-графики, позволяющей осуществлять плавную прокрутку и масштабирование.
На сегодня наиболее актуальной является платформа Armada 500, предназначенная для нетбуков и смартбуков. Она базируется на процессорном ядре Dove (88AP510) архитектуры ARMv7 (аналог процессоров Cortex) собственной разработки. Частотный диапазон – в пределах 1000–1250 МГц. Процессор оснащен дополнительным блоком для быстрого расчета векторных операций (VFP), модулем декодирования HD-видео стандарта 1080р и производительным 3D-видеоядром, поддерживающим ускорение технологии Adobe Flash.
Судя по последним анонсам, компания ARM всерьез планирует вскоре выйти на серверный рынок с новыми четырехъядерными процессорами Armada XP. Обновленный контроллер памяти будет в состоянии работать с обоими современными типами мобильной ОЗУ: LPDDR2/DDR3. Заявлена поддержка всех востребованных на сегодняшний день внешних интерфейсов: USB 2.0, SATA 2, PCI Express, Gigabit Ethernet и др. Из беспроводных адаптеров названы Wi-Fi 802.11a/b/g/n, WiMAX, 3G modem и Bluetooth. Наконец, данная платформа рассчитана на работу с множеством операционных систем: Android 3.0, Chrome OS, Ubuntu Linux, Windows Phone 7.
NVIDIA TEGRA/TEGRA 2
Поговорим теперь о разработках сравнительно нового, но весьма амбициозного игрока – NVIDIA. Первый блин «видеокарточной» компании традиционно вышел комом. Платформа Tegra не получила сколько-нибудь широкого распространения, несмотря на вполне приличные характеристики, в частности мощное видеоядро (в этой сфере позиции NVIDIA весьма сильны). Большинство анонсированных устройств на первой Tegra так и не попало в широкую розницу или было попросту отменено.
Иная судьба, похоже, ожидает новую платформу Tegra 2. В ее составе мощный современный двуядерный процессор ARM Cortex-A9 с частотой до 1 ГГц на ядро. Платформа поддерживает 1 Гб оперативной памяти, причем как мобильной LPDDR2, так и обычных модулей DDR2-667. Новое производительное 3D-видеоядро GeForce ULP опережает ближайших конкурентов на 30% и по мощности вполне сравнимо с «настольным» аналогом GeForce 9300. Поддерживаются одновременный вывод на два дисплея, стандартные видеовыходы CRT и HDMI 1.3, а также аппаратное кодирование и декодирование всех форматов видео, включая HD.
Помимо этого, выделен отдельный медиапроцессор для обработки звука и сигнала с цифровых камер (масштабирование, поворот, автофокус и т.п.) с разрешением до 12 Мпикс. Поддерживаются все актуальные на сегодняшний день интерфейсы: USB 2.0, SATA, кард-ридеры и др. Сетевые возможности, включая Wi-Fi, Ethernet, Bluetooth, в платформу не интегрированы и реализуются с помощью дополнительных сторонних контроллеров.
NVIDIA БУДУЩЕГО
Подобно Intel, NVIDIA не скрывает планов на будущее, одному из основных флагманов идустрии скрытность не пристала. Широкой общественности представлен роадмап компании на несколько лет вперед.
В планах NVIDIA – серьезное развитие архитектуры ARM. Ежегодно будет выходить новое поколение под очередным именем: Wayne (2012), Logan (2013) Stark (2014), с каждым шагом обеспечивая значительный прирост производительности. Обещано, что последнее поколение превысит производительность Tegra 2 в 75 раз!
Кстати, по имеющимся в Сети данным, процессоры следующей модификации платформы Tegra – версии 3 – в некоторых алгоритмах не уступают мобильным процессорам Intel Core 2 Duo.
В настоящее время анонсировано немало перспективных устройств на основе Tegra 2: планшеты LG Optimus Pad, Samsung Galaxy Tab II и ASUS Eee Pad Transformer, выпущенный недавно смартфон LG Optimus 2X и т.д. О намерении использовать данную платформу официально заявили такие крупные компании, как Acer, Dell, Toshiba, ViewSonic.
Отметим, что платформы от NVIDIA поддерживают все популярные мобильные операционные системы: Android, Chrome OS, Windows Mobile, Windows Phone 7, MeeGo.
QUALCOMM SNAPDRAGON
На очереди еще один из самостоятельных Full-custom-разработчиков SoC-платформ – компания Qualcomm. Семейство платформ Snapdragon основано на процессорах Scorpion собственной разработки по спецификациям аналогичных ARM Cortex-A8 и представляет новый этап их развития.
Современные высокоинтегрированные процессоры Scorpion имеют в своем составе два производительных ядра с частотным потолком до 1500 МГц. Центральный процессор усилен блоком VPF, ускоряющим вычисления с векторами и дробными числами. Встроенный контроллер памяти поддерживает LPDDR первого поколения, работающую в двухканальном режиме.
Видеоподсистема Adreno 220, ведущая родословную от графического ядра, применяемого в игровой приставке Microsoft Xbox360 Xenos, обеспечивает производительность в 3D-приложениях на вполне конкурентоспособном уровне.
С помощью специального блока видеопроцессор без проблем справляется с воспроизведением форматов высокой четкости без привлечения вычислительной мощности основного процессора, что положительно сказывается на экономии энергии при просмотре видео.
Особенностью платформы Snapdragon является наличие огромного количества встроенных сетевых контроллеров с поддержкой всех возможных технологий беспроводной связи: GSM, GPRS, EDGE, UMTS/WCDMA, HSDPA, HSUPA, MBMS, CDMA2000 и пр.
На основе платформы от Qualcomm собраны такие популярные модели мобильных устройств, как HTC HD2, HTC Desire HD, HTC Inspire, Sony Ericsson Xperia, LG Revolution, HP TouchPad и др.
TI OMAP 4/OMAP 5
Последней платформой, о которой пойдет речь в нашей статье, будут популярные семейства OMAP 4 и OMAP 5 от компании Texas Instrument. Четвертая серия OMAP базируется на двухъядерных процессорах ARM Cortex-A9 с частотой до 1500 МГц и оснащена спецблоками TrustZone и NEON. Платформа выгодно отличается от конкурентов наличием двухканального контроллера памяти с поддержкой LPDDR2. В состав также входит мощное видеоядро PowerVR SGX540 от Imagination Technologies, мало в чем уступающее разработкам NVIDIA. Реализованы поддержка OpenGL ES 2.0 и аппаратная обработка Full HD 1080p.
Данная платформа положена в основу весьма продвинутых устройств – RIM BlackBerry Playbook и LG Optimus 3D.
Еще более перспективной выглядит платформа OMAP 5. В ней будут задействованы уже четырехъядерные процессоры Cortex-A15 с частотой не менее 2000 МГц. Видеоподсистема оснащена последним многоядерным решением PowerVR SGX544MP, позволяющим существенно поднять планку производительности в 3D-играх и поддерживающим одновременный вывод сразу на четыре дисплея.
Конкуренцию OMAP 5, судя по всему, сможет составить только будущая Tegra 3.
ЗАКЛЮЧЕНИЕ
Нетрудно заметить, что платформа каждого производителя имеет свои сильные стороны. Продукция Apple отличается сбалансированностью и отлично отлаженной операционной cистемой, плюс огромный выбор ПО. Платформы от Marvell обладают высокой экономичностью. NVIDIA сильна графическими решениями. Фирма Qualcomm разрабатывает высокопроизводительные процессоры и оснащает свои платформы серьезной поддержкой сетевых протоколов. А компании Texas Instrument чаще других удается воплотить в кремнии самые последние разработки в области архитектуры. В итоге у покупателя всегда есть выбор и возможность приобрести устройство, наиболее полно отвечающее его запросам.
Но не это главное. Как и в живой природе, многообразие видов порождает конкуренцию, конкуренция ведет к естественному отбору – а это одно из ключевых условий эволюции, или, в нашем случае, научно-технического развития. Именно это позволяет надеяться на то, что в обозримом будущем мы сможем увидеть полнофункциональные компьютеры в наручных часах, мобильные телефоны в серьгах и прочие шедевры миниатюризации.