Что находится в узлах кристаллической решетки металлов

Кристаллические решетки

Кристаллической решеткой называют пространственное расположение атомов или ионов в кристалле. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические решетки подразделяют на молекулярные, атомные, ионные и металлические.

Что находится в узлах кристаллической решетки металлов

Очень важно не перепутать вид химической связи и кристаллической решетки. Помните, что кристаллические решетки отражают пространственное расположение атомов.

Молекулярная кристаллическая решетка

В узлах молекулярной решетки расположены молекулы. При обычных условиях молекулярную решетку имеют большинство газов и жидкостей. Связи чаще всего ковалентные полярные или неполярные.

Классическим примером вещества с молекулярной решеткой является вода, так что ассоциируйте свойства этих веществ с водой. Вещества с молекулярной решеткой непрочные, имеют небольшую твердость, летучие, легкоплавкие, способны к возгонке, для них характерны небольшие температуры кипения.

Примеры: NH3, H2O, Cl2, CO2, N2, Br2, H2, I2. Особо хочется отметить белый фосфор, ромбическую, пластическую и моноклинную серу, фуллерен. Эти аллотропные модификации мы подробно изучили в статье, посвященной классификации веществ.

Что находится в узлах кристаллической решетки металлов

Ионная кристаллическая решетка

В узлах ионной решетки находятся атомы, связанные ионной связью. Этот тип решетки характерен для веществ, обладающих ионной связь: соли, оксиды и гидроксиды металлов.

Что находится в узлах кристаллической решетки металлов

Металлическая кристаллическая решетка

В узлах металлической решетки находятся атомы металла. Этот тип решетки характерен для веществ, образованных металлической связью.

Ассоциируйте свойства этих веществ с медью. Они обладают характерным металлическим блеском, ковкие и пластичные, хорошо проводят электрический ток и тепло, имеют высокие температуры плавления и кипения.

Примеры: Cu, Fe, Zn, Al, Cr, Mn.

Что находится в узлах кристаллической решетки металлов

Атомная кристаллическая решетка

В узлах атомной решетки находятся атомы, связанные ковалентной полярной или неполярной связью.

Ассоциируйте эти вещества с песком. Они очень твердые, очень тугоплавкие (высокая температура плавления), нелетучие, прочные, нерастворимы в воде.

Примеры: SiO2, B, Ge, SiC, Al2O3. Особенно хочется выделить: алмаз и графит (C), красный и черный фосфор (P).

Что находится в узлах кристаллической решетки металлов

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Кристаллическая решетка

Что находится в узлах кристаллической решетки металлов

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Что такое кристаллическая решетка

Как известно, все вещества состоят из частиц — атомов, которые могут располагаться хаотично или в определенном порядке. У аморфных веществ частицы расположены беспорядочно, а у кристаллических они образуют определенную структуру. Эта структура называется кристаллической решеткой. Она определяет такие характеристики вещества, как твердость, хрупкость, температура кипения и/или плавления, пластичность, растворимость, электропроводность и т. д.

Что находится в узлах кристаллической решетки металлов

Кристаллическая решетка — это внутренняя структура кристалла, порядок взаимного расположения атомов, ионов или молекул. Точки, в которых находятся эти частицы, называются узлами решетки.

Частицы удерживаются на своих местах благодаря химическим связям между ними. В зависимости от того, какой вид связи удерживает атомы или ионы данного вещества, в химии выделяют основные типы кристаллических решеток:

атомная (ковалентные связи),

молекулярная (ковалентные связи и притяжение между молекулами),

металлическая (металлические связи),

ионная (ионные связи).

Что находится в узлах кристаллической решетки металлов

Строение и агрегатное состояние веществ

Выделяют три агрегатных состояния: твердое тело, жидкость и газ. Каждое из них предполагает определенное расположение частиц. Ниже мы расскажем подробнее, как связаны в химии кристаллическая решетка и агрегатное состояние вещества, а пока осветим общие закономерности.

Если частицы хаотично движутся, а расстояние между ними многократно превышает их собственные размеры — это газ. За счет большой удаленности друг от друга молекулы и атомы в таком веществе слабо взаимодействуют между собой.

Если частицы расположены все так же беспорядочно, но на небольшом расстоянии друг от друга — это жидкость. В жидком состоянии вещества его молекулы и атомы имеют более прочные связи, которые сложнее разорвать.

Если частицы собраны близко друг к другу и в определенном порядке — это твердое тело. В таком состоянии связи между ними наиболее прочны. Частицы могут двигаться только в пределах своего расположения и почти не перемещаются в пространстве.

Большинство веществ могут находиться и в твердом, и в жидком, и газообразном состоянии, а в зависимости от давления и температуры легко переходить из одного в другое. Типичный пример — вода, которая при нагревании превращается в пар, а при остывании становится твердым льдом.

Что находится в узлах кристаллической решетки металлов

Атомная кристаллическая решетка

Согласно своему названию, атомная кристаллическая решетка — это структура, в узлах которой расположены атомы. Они взаимодействуют с помощью ковалентных связей, то есть один атом отдает другому свободный электрон или же электроны из разных атомов образуют общую пару. В кристаллах с атомной решеткой частицы прочно связаны, что обуславливает ряд физических характеристик.

Свойства веществ с атомной решеткой:

неспособность к растворению в воде,

высокая температура кипения и плавления.

К примеру, атомную кристаллическую решетку имеет алмаз — самый твердый минерал в мире.

Другие примеры: германий Ge, кремний Si, нитрид бора BN, карборунд SiC. Типичный представитель этой группы — обычный песок, который по сути является оксидом кремния SiO2.

Что находится в узлах кристаллической решетки металлов

Молекулярная кристаллическая решетка

Как и в предыдущей группе, в этой находятся вещества с ковалентными связями между атомами. Но физические характеристики этих веществ совершенно иные — они легко плавятся, превращаются в жидкость, растворяются в воде. Почему так происходит? Все дело в том, что здесь кристаллы строятся не из атомов, а из молекул.

Молекулярная кристаллическая решетка — это структура, в узлах которой находятся не атомы, а молекулы.

Внутри молекул атомы имеют прочные ковалентные связи, но сами молекулы связаны между собой слабо. Поэтому кристаллы таких веществ непрочные и легко распадаются.

Молекулярная кристаллическая решетка характерна для воды. При комнатной температуре это жидкость, но стоит нагреть ее до температуры кипения (которая сравнительно низка), как она тут же начинает превращаться в пар, т. е. переходит в газообразное состояние.

Некоторые молекулярные вещества — например, сухой лед CO2, способны преобразоваться в газ сразу из твердого состояния, минуя жидкое (данный процесс называется возгонкой).

Что находится в узлах кристаллической решетки металлов

Свойства молекулярных веществ:

у некоторых — наличие запаха.

Помимо воды к веществам с молекулярной кристаллической решеткой относятся аммиак NH3, гелий He, радон Rn, йод I, азот N2 и другие. Все благородные газы — молекулярные вещества. Также к этой группе принадлежит и большинство органических соединений (например, сахар).

Что находится в узлах кристаллической решетки металлов

Ионная кристаллическая решетка

Как известно, в ходе ионной химической связи один атом отдает другому ионы и приобретает положительный заряд, в то время как принимающий атом заряжается отрицательно. В итоге появляются разноименно заряженные ионы, из которых и состоит структура кристалла.

Ионная решетка — это кристаллическая структура, в узловых точках которой находятся ионы, связанные взаимным притяжением.

Ионную кристаллическую решетку имеют практически все соли, типичным представителем можно считать поваренную соль NaCl. О ней стоит вспомнить, если нужно перечислить физические характеристики этой группы. Также ионную решетку имеют щелочи и оксиды активных металлов.

Свойства веществ с ионной структурой:

способность растворяться в воде.

Примеры веществ с ионной кристаллической решеткой: оксид кальция CaO, оксид магния MgO, хлорид аммония NH4Cl, хлорид магния MgCl2, оксид лития Li2O и другие.

Что находится в узлах кристаллической решетки металлов

Металлическая кристаллическая решетка

Для начала вспомним, как проходит металлическая химическая связь. В молекуле металла свободные отрицательно заряженные электроны перемещаются от одного иона к другому и соединяются с некоторыми из них, а после отрываются и мигрируют дальше. В результате получается кристалл, в котором ионы превращаются в атомы и наоборот.

Металлическая кристаллическая решетка — это структура, которая состоит из ионов и атомов металла, а между ними свободно передвигаются электроны. Как несложно догадаться, она характерна лишь для металлов и сплавов.

Свободные электроны, мигрирующие между узлами решетки, образуют электронное облако, которое под воздействием электротока приходит в направленное движение. Это объясняет такое свойство металлов, как электрическая проводимость.

В химии типичным примером вещества, которое имеет металлическую кристаллическую решетку, считается медь. Она очень ковкая, пластичная, имеет высокую тепло- и электропроводность. Впрочем, все металлы ярко демонстрируют эти характеристики, поэтому назвать физические свойства данной группы несложно.

Что находится в узлах кристаллической решетки металлов

Свойства веществ с металлической кристаллической решеткой:

При этом температура плавления веществ может существенно различаться. Например, у ртути это −38,9°С, а у бериллия целых +1287°С.

Подведем итог: о характеристиках разных типов кристаллических решеток расскажет таблица.

Частицы в узлах решетки

Тип связи между частицами

Физические свойства веществ

АтомнаяАтомыКовалентная связьТвердые неметаллы: графит, кремний, бор, германий и другие.При обычных условиях прочные и твердые, тугоплавкие, нерастворимые в воде, нелетучие.МолекулярнаяМолекулыСилы притяжения между молекуламиВещества, образующие маленькие молекулы (CO2, Cl2, H2O), благородные газы, органические вещества.При обычные условиях — газы или жидкости. Легкоплавкие, летучие, некоторые способны к возгонке.ИоннаяИоныИонная связьСоли, большая часть органических соединений, оксиды, щелочи.Твердые, тугоплавкие, хрупкие, нелетучие, растворимы в воде, способны проводить электроток.МеталлическаяАтомы и ионыМеталлическая связьВсе металлы и сплавы.Твердые (кроме ртути), ковкие, имеют блеск, отличаются теплопроводностью, электропроводностью.

Как определить кристаллическую решетку

Как понятно из предыдущего материала, строение вещества, его состав и физические характеристики тесно связаны. Поэтому для определения вида кристаллической решетки можно руководствоваться теми данными, которые у нас есть. Как правило, известен состав вещества, а значит, мы можем сделать вывод о химических связях внутри его молекулы, что позволит в свою очередь предположить тип решетки.

Также можно провести быстрый анализ:

если это неметалл, который при комнатной температуре представляет собой твердое тело — скорее всего он имеет атомную решетку;

если в обычных условиях это жидкость или газ либо речь об органическом веществе — предполагаем молекулярную решетку;

если это соль либо щелочь — кристаллы имеют ионную решетку;

если это металл или сплав — решетка точно будет металлической.

Вопросы для самопроверки:

Назовите виды кристаллических решеток.

Чем отличается кристаллическая решетка от химической связи?

Назовите примеры веществ с металлической кристаллической решеткой, с ионной, атомной и молекулярной.

Выберите лишнее вещество: молекулярную кристаллическую решетку имеет вода, поваренная соль, аргон, криптон.

Какое строение вещества придает ему высокую электропроводность?

Какое строение кристалла может придать веществу способность к возгонке?

Источник

Что находится в узлах кристаллической решетки металлов

Что находится в узлах кристаллической решетки металлов Что находится в узлах кристаллической решетки металловЧто находится в узлах кристаллической решетки металлов

1.1. Аморфные и кристаллические тела

В твердых телах атомы могут размещаться в пространстве двумя способами:

Аморфные вещества обладают формальными признаками твердых тел, т.е. они способны сохранять постоянный объем и форму. Однако они не имеют определенной температуры плавления или кристаллизации.

Внешние электронные орбиты атомов сопри­касаются, так что плотность упаковки атомов в кристаллической решетке весьма велика.

В кристаллитах соблюдаются ближний и дальний порядки. Это означает на­личие упорядоченного расположения и стабильности как ок­ружающих данный атом ближайших его соседей (ближний порядок), так и ато­мов, находящихся от него на значительных расстояниях вплоть до границ зерен (дальний порядок ).

Что находится в узлах кристаллической решетки металлов

Рис. 1.1. Расположение атомов в кристаллическом (а) и аморфном (б) веществе

Вследствие диффузии отдельные атомы могут по­кидать свои места в узлах кристаллической решетки, однако при этом упорядоченность кристаллического строения в целом не на­рушается.

1.2. Основные типы кристаллических решеток

Все металлы являются кристаллическими телами, имею­щими определенный тип кристаллической решетки, состоящей из малоподвижных положительно заряженных ионов, между которыми движутся свободные электроны (так называемый электронный газ). Такой тип структуры называется металлической связью.

Тип ре­шетки определяется формой элементарного геометриче­ского тела, многократное повторение которого по трем пространственным осям образует решетку данного кристал­лического тела.

Что находится в узлах кристаллической решетки металлов

Что находится в узлах кристаллической решетки металлов

Что находится в узлах кристаллической решетки металлов

объемно-центрированная кубическая (ОЦК)

гранецентрированная кубическая (ГЦК)

гексагональная плотноупакованная (ГП)

(6 атомов на ячейку)

Рис. 1.2. Основные типы кристаллических решеток металлов

Основу ОЦК-решетки составляет элементарная кубиче­ская ячейка (рис. 1.2,б), в которой положительно заряжен­ные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей. Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы.

У ГЦК-решетки (рис. 1.2, в) элементарной ячейкой слу­жит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.

Третьей распространенной разновидностью плотноупако­ванных решеток является гексагональная плотноупакованная (ГПУ, рис. 1.2, г). ГПУ-ячейка состоит из отстоя­щих друг от друга на параметр с параллельных центриро­ванных гексагональных оснований. Три иона (атома) нахо­дятся на средней плоскости между основаниями.

У гексагональных решеток отношение параметра с/ а всегда больше единицы. Такую решетку имеют маг­ний, цинк, кадмий, берилий, титан и др.

Компактность кристаллической решетки или степень за­полненности ее объема атомами является важной характе­ристикой. Она определяется такими показателями как параметр решетки, число атомов в каждой элементарной ячейке, координационное число и плотность упаковки.

Параметры а кубических решеток металлов находятся в пределах от 0,286 до 0,607 нм. Для металлов с гексагональной решеткой а лежит в пределах 0,228-0,398 нм, а с в пределах 0,357- 0,652 нм.

Пара­метры кристаллических решеток металлов могут быть измерены с по­мощью рентгеноструктурного анализа.

При подсчете числа атомов в каждой элементарной ячейке следует иметь в виду, что каждый атом входит одновременно в несколько яче­ек. Например, для ГЦК-решетки, каждый атом, находящийся в вершине куба, принадлежит 8 ячейкам, а атом, центрирующий грань, двум. И лишь атом, находящийся в центре куба, полностью при­надлежит данной ячейке.

Таким образом, ОЦК- и ГЦК-ячейки содержат соответ­ственно 2 и 4 атома.

Под координационным числом понимается количество ближайших соседей данного атома.

Что находится в узлах кристаллической решетки металлов

Рис. 1.3. Координационное число в различных кристаллических решетках для атома А:

В ОЦК решетке (рис. 1.3, а) атом А (в центре) находится на наиболее близ­ком равном расстоянии от восьми атомов, расположенных в вершинах куба, т. е. координационное число этой решетки равно 8 (К8).

В ГЦК решетке (рис. 1.3, б) атом А (на грани куба) находится на наиболее близком равном расстоянии от четырех атомов /, 2, 3, 4, расположенных в вершинах куба, от четырех атомов 5, 6, 7, 8, расположенных на гранях куба, и, кроме того, от четырех атомов 9, 10, 11, 12, принадлежащих располо­женной рядом кристаллической ячейке. Атомы 9, 10, 11, 12 симметричны атомам 5, 6, 7, 8. Таким образом, ГЦК решетки координацион­ное число равно 12 (К12).

В ГПУ решетке при с/а = 1,633 (рис. 1.3, в) атом А в центре шестигранного основания призмы находится на наиболее близком равном расстоянии от шести атомов /, 2, 3, 4, 5, 6, размещенных в вершинах шестигранника, и от трех атомов 7, 8, 9, расположенных в средней плоскости призмы. Кроме того, атом А оказывается на таком же расстоянии еще от трех атомов 10, 11, 12, принадлежащих кристаллической ячейке, лежащей ниже основания. Атомы 10, 11, 12 симметричны атомам 7, 8, 9.

Следовательно, для ГПУ решетки координационное число равно 12 (Г12).

Плотность упаковки представляет собой отношение сум­марного объема, занимаемого собственно атомами в кристал­лической решетке, к ее полному объему. Различные типы кристаллических решеток имеют раз­ную плотность упаковки атомов. В ГЦК решетке атомы занимают 74 % всего объема кристаллической решетки, а межатом­ные промежутки («поры») 26 %. В ОЦК решетке атомы занимают 68 % всего объема, а «поры» 32 %. Компактность решетки за­висит от особенностей электронной структуры металлов и ха­рактера связи между их атомами.

От типа кристаллической решетки сильно зависят свойства металла.

1.3. Кристаллографические направления и плоскости

Упорядоченность кристаллического строения в пространственной решетке позволяет выделить отдельные кри­сталлографические направления и плоскости.

Что находится в узлах кристаллической решетки металлов

Кристаллографическими плоскостями являются, напри­мер, плоскости граней кубов (рис. 1.4, б), а также их раз­личные диагональные плоскости вместе с находящимися на них атомами (рис. 1.4, в, г). Для ГПУ-ре­шеток кристаллографическими плоскостями могут быть плоскости оснований (рис. 1.2, г).

Для определения индекса какого-либо направления необ­ходимо найти индекс ближайшего к данной точке отсчета атома, находящегося на данном направлении. На­пример, индекс ближайшего атома вдоль оси ОХ обозначает­ся цифрами 100 (рис. 1.4,а). Эт и цифры представляют собой координаты упомянутого атома относи­тельно точки О, выраженные через количество параметров вдоль осей OX, OY и OZ соответственно.

Индексы направления ОХ и параллельных ему направле­ний обозначаются [100]. Соответственно направления OY и OZ обозначаются [010] и [001]. Кристаллографические направления вдоль диагоналей граней XOZ, XOY и YOZ обозначают [101], [110] и [011]. Пользуясь указанной мето­дикой, можно определить индекс любого направления. На­пример, индекс направления вдоль диагонали куба выразит­ся так: [111].

Индексами плоскостей, параллельных плоскостям XOZ и YOZ, окажутся выражения (010) и (100) (рис. 1.4, б). Индекс вертикальной диагональной плоскости куба выразит­ся через (110), (рис. 1.2, в), а индекс наклонной плоско­сти, пересекающейся со всеми тремя осями координат на уда­лении одного параметра, примет вид (111) (см. рис. 1.4, г).

1.4. Анизотропия в кристаллах

Под анизотропией понимается неодинаковость механиче­ских и других свойств в кристаллических телах вдоль раз­личных кристаллографических направлений. Она является естественным следствием кристаллического строения, так как на различных кристаллографических плоскостях и вдоль различных направлений плотность атомов различна.

Например, в куби­ческих решетках (см. рис. 1.2, б, в) по направлениям вдоль ребер насчитывается меньше атомов, чем вдоль диагоналей куба в ОЦК-решетке или диагоналей граней в ГЦК-решетке. На плоскостях, проходящих через грани ОЦК- и ГЦК-решеток, находится меньше атомов, чем на диагональных плоскостях.

Поскольку механические, физические и химические свойства вдоль различных направлений зависят от плотности находя­щихся на них атомов, то перечисленные свойства вдоль раз­личных направлений в кристаллических телах должны быть неодинаковыми.

Анизотропия проявляется только в пределах одного монокристалла или зерна-кри­сталлита. В поликристаллических телах она не наблюдается из-за усреднения свойств по каждому направлению для огром­ного количества произвольно ориентированных друг относи­тельно друга зерен. Поэто­му реальные металлы являются квазиизотропными телами, т. е. псевдоизотропными.

Что находится в узлах кристаллической решетки металлов

Рис. 1.5. Элементарная ячейка решетки ОЦК

Сдвиг в кристалле происходит наиболее легко вдоль атомных плоскостей с наиболее плотной упаковкой атомов. Рассмотрим объемно-центрическую кубическую решетку (ОЦК) (рис. 1.5):

Рис. 1.6. Плоскости решетки ОЦК

1.5. Аллотропия металлов

Некоторые металлы, например, железо, титан, олово и др. способны по достижении определенных темпера­тур изменять кристаллическое строение, т. е. изменять тип элементарной ячейки своей кристаллической решетки. Это явление получило название аллотропии или полиморфизма, а сами переходы от одного кристаллического строения к дру­гому называются аллотропическими или полиморфными.

На рис. 1.7 показано изменение свободной энергии F от температуры t для двух вариантов кристаллического строения же­леза: ОЦК (кривая 1 ) и ГЦК (кривая 2).

В интервале температур 911-1392 о C железо имеет решетку ГЦК, так как при этом его свободная энергия меньше. При t 1392°С, у него должна быть ре­шетка ОЦК, обладающая меньшей свободной энергией.

1.6. Дефекты кристаллической решетки металла

Кристаллическая решетка, в которой отсутствуют нарушения сплошности и все узлы заполнены однородными атомами называется идеальной кристалли­ческой решеткой металла.

В решетке реального металла могут находиться различные дефекты.

Все дефекты кристаллической решетки принято делить на точечные, линейные, поверхностные и объемные.

Точечные дефекты соизмеримы с размерами атомов. К ним относятся вакансии, т. е. незаполненные узлы решет­ки, межузельные атомы данного металла (рис 1.8), примесные атомы замещения, т. е. атомы, по диаметру соизмеримые с атомами данного металла и примесные атомы внедрения, имеющие очень малые размеры и поэтому находящиеся в междоузлиях (рис 1.9). Влияние этих дефектов на прочность металла может быть различным в зависимости от их ко­личества в единице объема и характера.

Что находится в узлах кристаллической решетки металлов

Рис. 1.8. Схема образования пары вакансия-внедренный атом

Рис. 1.9. Примесные атомы внедрения и замещения

Линейные дефекты имеют длину, значительно превышаю­щую их поперечные размеры. К ним относятся дислокации, т. е. дефекты, образующиеся в решетке в результате смещений кристаллографических плоскостей.

Дислокации бывают двух видов.

Наиболее характерной является краевая дислокация (рис. 1.10). Она образуется в результате возникновения в решетке так называемой полуплоскости или экстраплоскости.

Что находится в узлах кристаллической решетки металлов

Рис. 1.10. Схема краевой дислокации в идеальном кристалле

Нижний ряд экстраплоскости собственно и принято называть дислокацией.

Другим типом дислокации является винтовая дислокация, которая представляет собой некоторую условную ось внутри кристалла, вокруг которой закручены атомные плоскости (рис.1.11).

Что находится в узлах кристаллической решетки металлов

Рис. 1.11. Схема винтовой дислокация

В винтовой дислокации, так же как в краевой, существенные искажения кристаллической решетки наблюдаются только вблизи оси, поэтому такой дефект может быть отнесен к линейным.

Дислокации обладают высокой подвижностью, поэтому существенно уменьшают прочность металла, так как облегчают образование сдвигов в зернах-кристаллитах под действием приложенных напряжений.

Дислокационный механизм сдвиговой пластической деформации внутри кристаллов может привести к разрушению изделия. Таким образом, дислокации непосредственно влияют на прочностные характеристики металла.

На рис. 1.12 в виде кривой ABC схематически показана за­висимость прочности металла от плотности дислокаций. Точ­ка А соответствует теоретической прочности металла, обус­ловленной необходимостью одновременного разрыва всех межатомных связей, проходящих через плоскость сдвига, в случае отсутствия дислокаций.

При увеличении количества дислокаций (см. участок АВ) прочность резко снижается, так как на несколько порядков уменьшаются усилия, необходимые для осущест­вления сдвигов в зернах металла при его деформировании и разрушении.

Рис. 1.12. Зависимость предела прочности кристалла от плотности линейных дефектов(дислокаций). Кривая Одинга

При плотности дислокаций 10 6- 10 7 см-2 (точ­ка В на кривой), прочности минимальна, и на участке ВС происходит ее рост. Это объясняется тем, что с ростом плотности дислокаций их передвижение происходит не только по парал­лельным, но и по пересекающимся плоскостям, что существенно затрудняет процесс деформирования зерен.

Поэтому начиная с точки В прочность металла возрастает.

Поверхностные дефекты включают в себя главным образом границы зерен (рис.1.13). На границах кристаллическая решетка сильно искажена. В них скапливаются перемещающиеся изнутри зерен дислокации.

Из практики известно, что мелкозернистый металл прочнее круп­нозернистого. Так как у последнего меньше суммарная про­тяженность (площадь) границ. То можно сделать вывод, что поверхностные дефекты способствуют повышению прочности металла. Поэтому создано несколько технологических способов полу­чения мелкозернистых сплавов.

Что находится в узлах кристаллической решетки металлов

Рис.1.13. Структура границы двух соседних кристаллических зерен

Объемные дефекты кристаллической решетки включают трещины и поры. Наличие данных дефектов, уменьшая плотность металла, снижает его прочность.

Кроме того, трещины являются сильными концентратора­ми напряжений, в десятки и более раз повышающими напря­жения создаваемые в металле рабочими нагрузками. По­следнее обстоятельство наиболее существенно влияет на прочность металла.

Контрольные вопросы по лекции №1

В чем состоит существенная разница между строением аморфных и кристаллических тел? Что такое кристаллическая решетка?

Перечислите основные типы ячеек кристаллических решеток металлов. Что такое параметры решеток?

Что понимается под кристаллографическими направлениями и плоскостями и как они обозначаются?

Что такое анизотропия свойств в кристаллах, чем она обусловлена? Привести пример.

Почему поликристаллические тела являются изотропными? Что такое квазиизотропия (псевдоизотропия)?

Что такое аллотропия (полиморфизм) металлов и ка­ково ее практическое значение?

Что представляют собой краевые дислокации, какова их роль в протекании пластической деформации металла и как они влияют на его прочность?

Что такое плотность дислокаций и как она влияет на характер изменения прочности металла?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *