Что находится сверху дроби

Дроби

Дроби это тема об которую спотыкается половина жителей нашей планеты. Если спросить у людей с какой темы у них начались проблемы с математикой, то большинство из них ответят — с дробей.

Этих людей нельзя упрекнуть. Дроби действительно тема не из простых. Тема дробей требует много терпения и внимания, особенно если человек изучает её впервые.

Но есть и хорошие новости. Если вы наберётесь терпения и освоите дроби, то уверяем, что дальнейшее изучение математики станет для вас простым и интересным.

А если вы ещё хорошо изучили предыдущий урок, который назывался деление, то можете быть уверены, что дроби вы освоили уже наполовину.

Что такое дробь?

Если говорить простым языком, то дробь это часть чего-либо. Это «чего-либо» может быть чем угодно — едой, деньгами, числом. В народе дробь называют долей. Само слово «дробь» тоже говорит за себя — дробь означает дробление, деление, разделение.

Рассмотрим пример из жизни. Мы купили себе пиццу, чтобы съесть её в течении дня. Допустим мы решили разделить её на четыре части, чтобы съедать постепенно по одному кусочку.

Что находится сверху дроби

Посмотрите на этот рисунок. Представьте, что это наша пицца, разделённая на четыре куска. Каждый кусок пиццы это и есть дробь, потому что каждый кусок по отдельности это часть пиццы.

Допустим мы съели один кусок. Как его записать? Очень просто. Сначала рисуется маленькая линия:

Что находится сверху дроби

Внизу этой линии записывается на сколько кусков пицца была разделена. Пицца была разделена на четыре куска. Значит внизу линии записывается четвёрка:

Что находится сверху дроби

А сверху этой линии записывается сколько кусков пиццы было съедено. Съеден был один кусок, значит сверху записываем единицу:

Что находится сверху дроби

Такие записи называют дробями. Дробь состоит из числителя и знаменателя.

Число, которое записывается сверху, называется числителем дроби.

Число, которое записывается снизу, называется знаменателем дроби.

В нашем примере числитель дроби это единица, а знаменатель дроби — четвёрка. Эту дробь можно прочитать так: «одна четвёртая» либо «один кусок из четырёх» либо «одна четвёртая доля» либо «четверть» — в сё это синонимы.

Теперь представьте, что мы съели ещё один кусок той же самой пиццы, которая была разделена на четыре куска. Как записать такую дробь?

Очень просто. Сверху записываем 2 (поскольку уже съедено два куска), а внизу записываем 4 (поскольку всего кусков было 4):

Что находится сверху дроби

Теперь представьте, что пиццу мы разделили не на четыре части, а на три.

Что находится сверху дроби

Допустим мы съели один кусок этой пиццы. Как записать такую дробь?

Очень просто. Опять же рисуется маленькая линия. Внизу этой линии записывается число 3, поскольку пицца разделена на три части, а сверху этой линии записывается число 1, поскольку съеден один кусок:

Что находится сверху дроби

Если мы съедим два куска пиццы, то такая дробь будет называться «две третьих» и записываться следующим образом:

Что находится сверху дроби

Теперь представьте, что пиццу мы разделили на две части, или как говорят в народе: «Пополам» :

Что находится сверху дроби

Допустим, из этих двух кусков мы съели один кусок. Как записать такую дробь?

Опять же рисуем линию. Внизу этой линии записываем число 2, поскольку пицца разделена на две части, а вверху записываем число 1, поскольку съеден один кусок:

Что находится сверху дроби

Эта дробь читается так: «одна вторая» либо «один кусок из двух» либо «одна вторая доля» либо «половина».

Дроби, которые мы сейчас рассмотрели, называют обыкновенными.

Вообще, дроби бывают двух видов: обыкновенные и десятичные. На данный момент мы рассматриваем обыкновенные дроби. Обыкновенная дробь это дробь, которая состоит из числителя и знаменателя. Десятичные дроби рассмотрим немного позже.

Знаменатель дроби — это число, которое показывает на сколько равных частей можно что-либо разделить. Вернёмся к нашей пицце. Поровну эта пицца может быть разделена и на 2 части и на 3, и на 4, и на 5, и на 6. В зависимости от того, на сколько частей мы будем делить пиццу, знаменатель будет меняться.

На следующем рисунке представлены три пиццы, которые разделены по разному. У первой пиццы знаменателем будет 2. У второй пиццы знаменателем будет 3. У третьей пиццы знаменателем будет 4.

Что находится сверху дроби

Числитель же показывает сколько частей взято от чего-либо. К примеру, если разделить пиццу на две части, как на первом рисунке, и взять одну часть для трапезы, то получится что мы взяли Что находится сверху дроби( одну часть из двух ), или как говорят в народе «половину» пиццы.

С помощью переменных дробь можно записать так:

Что находится сверху дробигде a — это числитель, b — знаменатель.

Следующая вещь, которую важно знать это то, что обыкновенные дроби бывают правильными и неправильными.

Правильная дробь — это дробь, у которой числитель меньше знаменателя. Например, следующие дроби являются правильными:

Что находится сверху дроби

Почему такие дроби называют правильными? Вспомним, что дробь это часть чего-либо. Ведь будет логичнее, если эта часть будет меньше того, откуда эта часть была взята. Например, если пицца разделена на четыре части, и мы возьмём Что находится сверху дроби( одну четвёртую ), то наш кусок будет меньше, чем все четыре куска вместе взятые ( чем одна целая пицца ). Поэтому такие дроби называют правильными.

С неправильной дробью всё с точностью наоборот. Неправильная дробь — это дробь, у которой числитель больше знаменателя. Например, следующие дроби являются неправильными:

Что находится сверху дробиВидно, что у этих дробей числитель больше знаменателя. Почему же такие дроби называют неправильными? Вспомним, что дробь это часть чего-либо. Знаменатель показывает на сколько частей это чего-либо разделено. А числитель показывает сколько этого чего-либо взяли.

Теперь возьмём к примеру неправильную дробь Что находится сверху дробии применим её к нашей пицце. В знаменателе стоит 2, значит пицца разделена на две части, а в числителе стоит 9. Получается, что взято девять кусков из двух. Но как можно взять девять кусков, если их всего два? Ответ — никак. Поэтому такие дроби называют неправильными.

Дробь, у которой числитель и знаменатель одинаковые, тоже называют неправильной. Например:

Что находится сверху дроби

Вообще, такие дроби даже не должны называться дробями. И вот почему. Рассмотрим к примеру дробь Что находится сверху дроби. Применим её к нашей пицце.

Допустим, мы хотим съестьЧто находится сверху дробипиццы. В знаменателе стоит число 2, значит пицца разделена на две части. И в числителе стоит 2, значит взято две части. По сути, взята вся целая пицца, и если мы съедим этуЧто находится сверху дробипиццы, то съедим не часть пиццы, а всю пиццу целиком. Иными словами, съедим не дробь, а целую часть пиццы. Поэтому дробь, у которой числитель и знаменатель одинаковые, называют неправильной.

Дробь означает деление

Черта в дроби, которая отделяет числитель от знаменателя, означает деление. Она говорит, что числитель можно разделить на знаменатель.

Например, рассмотрим дробь Что находится сверху дроби. Дробная черта говорит, что четвёрку можно разделить на двойку. Мы знаем, что четыре разделить на два будет два. Ставим знак равенства (=) и записываем ответ:

Что находится сверху дроби

Можно сделать вывод, что любое деление чисел можно записать с помощью дробей. Например:

Что находится сверху дроби

Это простейшие примеры. Видно, что у них отсутствует остаток. С остатком немного сложнее, зато интереснее. Поговорим об этом в следующей теме, которая называется «выделение целой части дроби».

Выделение целой части дроби

Вычислим дробь Что находится сверху дроби. Пять разделить на два будет два и один в остатке:

5 : 2 = 2 (1 в остатке)

Проверка: (2 × 2) + 1 = 4 + 1 = 5

Но сейчас мы имеем дело с дробями, значит и отвечать надо в дробном виде. Чтобы хорошо понять, как это делается, рассмотрим пример из жизни.

Представьте, что у вас есть 5 яблок и вы решили поделиться ими со своим другом. Причём поделиться по-честному, чтобы каждому досталось поровну. Как разделить эти 5 яблок?

Очевидно, что каждому из вас достанется по два яблока, а оставшееся одно яблоко вы разрежете ножом пополам и тоже разделите между собой:

Что находится сверху дроби

Посмотрите внимательно на этот рисунок. На нём показано, как пять яблок разделены между вами и вашим другом. Очевидно, что каждому досталось по два целых яблока и по половинке яблока.

Теперь возвращаемся к дроби Что находится сверху дробии отвечаем на её вопрос. Сколько будет пять разделить на два? Смотрим на наш рисунок и отвечаем: если пять яблок разделить на двоих, то каждому достанется два целых яблока и половинка яблока. Так и записываем:

Что находится сверху дроби

Схематически это выглядит так:

Что находится сверху дроби

Процедуру, которую мы сейчас провели, называют выделением целой части дроби.

В нашем примере мы выделили целую часть дроби Что находится сверху дробии получили новую дробь Что находится сверху дроби. Такую дробь называют смешанной. Смешанная дробь — это дробь, у которой есть целая часть и дробная.

В нашем примере целая часть это 2, а дробная часть это Что находится сверху дроби

Что находится сверху дроби

Обязательно запомните эти понятия! А лучше запишите в свою рабочую тетрадь.

Выделить целую часть можно только у неправильных дробей. Напомним, что неправильная дробь это дробь, у которой числитель больше знаменателя. Например, следующие дроби являются неправильными, и у них выделена целая часть:

Что находится сверху дроби

Чтобы выделить целую часть, достаточно знать, как делить числа уголком. Например, выделим целую часть у дроби Что находится сверху дроби. Записываем уголком данное выражение и решаем:

Что находится сверху дроби

После того, как решение примера завершается, новую дробь собирают подобно детскому конструктору. Важно понимать, что куда относить. Частное относят к целой части, остаток относят в числитель дробной части, делитель относят в знаменатель дробной части.

В принципе, если вы хорошо знаете таблицу умножения, и можете быстро в уме выполнять элементарные вычисления, то можно обойтись без записей уголком. В школах кстати, именно этого и требуют — чтобы учащиеся не тратили время на простые операции, а сразу записывали ответы.

Но если вы только начинаете изучать математику, советуем записывать каждую мелочь.

Рассмотрим ещё один пример на выделение целой части. Пусть требуется выделить целую часть дроби Что находится сверху дроби

Записываем уголком данное выражение и решаем. Потом собираем смешанную дробь:

Что находится сверху дроби

Получили: Что находится сверху дроби

Перевод смешанного числа в неправильную дробь

Любое смешанное число получается в результате выделения целой части в неправильной дроби. Например, рассмотрим неправильную дробь Что находится сверху дроби. Если выделить в ней целую часть, то получается Что находится сверху дроби

Что находится сверху дроби

Но возможен и обратный процесс — любое смешанное число можно перевести в неправильную дробь. Для этого целую часть надо умножить на знаменатель дробной части и полученный результат прибавить к числителю дробной части. Полученный результат будет числителем новой дроби, а знаменатель останется без изменений.

Например, переведём смешанное число Что находится сверху дробив неправильную дробь. Умножаем целую часть 2 на знаменатель дробной части:

Затем к 6 прибавляем числитель дробной части:

Полученная семёрка будет числителем новой дроби, а знаменатель 3 останется без изменений:

Что находится сверху дроби

Подробное решение выглядит так:

Что находится сверху дроби

А с помощью переменных перевод смешанного числа в неправильную дробь можно записать так:

Что находится сверху дроби

Пример 2. Перевести смешанное число Что находится сверху дробив неправильную дробь.

Умножаем целую часть смешанного числа на знаменатель дробной части и прибавляем к числителю дробной части, а знаменатель оставляем без изменений:
Что находится сверху дроби

Основное свойство дроби

Основное свойство дроби говорит о том, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь. Это означает, что значение дроби не изменится.

Например, рассмотрим дробь Что находится сверху дроби. Умножим её числитель и знаменатель на одно и то же число, например на число 2

Что находится сверху дроби

Получили новую дробь Что находится сверху дроби. Если верить основному свойству дроби, то дроби Что находится сверху дробии Что находится сверху дробиравны между собой. Так ли это? Давайте проверим, нарисовав эти дроби в виде кусочков пиццы:

Что находится сверху дроби

Поэтому между дробями Что находится сверху дробии Что находится сверху дробиможно поставить знак равенства (=), поскольку они равны одному и тому же значению:

Что находится сверху дроби

Теперь испытаем основное свойство дроби, разделив числитель и знаменатель на одно и то же число.

Рассмотрим дробь Что находится сверху дроби. Давайте разделим её числитель и знаменатель на одно и то же число, например на число 2

Что находится сверху дроби

Получили новую дробь Что находится сверху дроби. Если верить основному свойству дроби, то дроби Что находится сверху дробии Что находится сверху дробиравны между собой. Так ли это? Давайте проверим, нарисовав эти дроби в виде кусочков пиццы:

Что находится сверху дроби

Поэтому между дробями Что находится сверху дробии Что находится сверху дробиможно поставить знак равенства (=), поскольку они равны одному и тому же значению:

Что находится сверху дроби

Теперь мы полностью проверили, как работает основное свойство дроби, и убедились, что работает оно замечательно.

Число, на которое умножается числитель и знаменатель, называется дополнительным множителем. Запомните это обязательно!

Сокращение дробей

Дроби можно сокращать. Сократить — значит сделать дробь короче и проще для восприятия. Например, дробь Что находится сверху дробивыглядит намного проще и красивее, чем дробь Что находится сверху дроби.

Если при решении примеров получается большая и некрасивая дробь, то нужно попытаться её сократить.

Сокращение дроби опирается на основное свойство дроби. Поэтому, прежде чем изучать сокращение дробей, обязательно изучите основное свойство дроби.

Деление числителя и знаменателя на их наибольший общий делитель называется сокращением дроби.

Пример 1. Сократить дробь Что находится сверху дроби

Итак, нужно разделить числитель и знаменатель дроби Что находится сверху дробина наибольший общий делитель чисел 2 и 4.

В данном случае дробь простая и для неё НОД ищется легко. НОД чисел 2 и 4 это число 2. Значит, числитель и знаменатель дроби Что находится сверху дробинадо разделить на 2

Что находится сверху дроби

В результате дробь Что находится сверху дробиобратилась в более простую дробь Что находится сверху дроби. Значение исходной дроби при этом не изменилось, поскольку сокращение подразумевает деление числителя и знаменателя на одно и то же число. А это действие, как было указано ранее, не меняет значение дроби.

Что находится сверху дроби

На рисунке представлены дроби Что находится сверху дробии Что находится сверху дробив виде кусочков пиццы. До сокращения и после сокращения они имеют одинаковые размеры. Разница лишь в том, что раздéланы они по-разному.

Пример 2. Сократим дробь Что находится сверху дроби

Чтобы сократить дробь Что находится сверху дроби, нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 20 и 40.

НОД чисел 20 и 40 это число 20. Поэтому делим числитель и знаменатель дроби Что находится сверху дробина 20

Что находится сверху дроби

Пример 3. Сократим дробь Что находится сверху дроби

Чтобы сократить дробь Что находится сверху дроби, нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 32 и 36.

НОД чисел 32 и 36 это число 4. Поэтому делим числитель и знаменатель дроби Что находится сверху дробина 4

Что находится сверху дроби

Если в числителе и знаменателе располагаются простые числа, то такую дробь сократить нельзя — она не сокращается. Такие дроби называют несократимыми. Например, следующие дроби являются несократимыми:

Что находится сверху дроби

Напомним, что простыми называются числа, которые делятся только на единицу и самих себя.

Второй способ сокращения дроби

Второй способ является короткой версией первого способа. Суть его заключается в том, что пропускается подробное разъяснение того, на что был разделён числитель и знаменатель.

К примеру, вернёмся к дроби Что находится сверху дроби. Эту дробь мы сократили на 4, то есть разделили числитель и знаменатель этой дроби на число 4

Что находится сверху дроби

Теперь представьте, что в данном выражении отсутствует конструкция Что находится сверху дроби, и сразу записан ответ Что находится сверху дроби. Получится следующее выражение:

Что находится сверху дроби

Суть в том что число, на которое разделили числитель и знаменатель, хранят в уме. В нашем случае числитель и знаменатель делят на 4 — это число и будем хранить в уме.

Сначала делим числитель на число 4. Полученный ответ записываем рядом с числителем, предварительно зачеркнув его:

Что находится сверху дроби

Затем таким же образом делим знаменатель на число 4. Полученный ответ записываем рядом со знаменателем, предварительно зачеркнув его:

Что находится сверху дроби

Затем собираем новую дробь. В числитель отправляем новое число 8 вместо 32, а в знаменатель отправляем новое число 9 вместо 36

Что находится сверху дроби

Происходит своего рода замена одной дроби на другую. Значение новой дроби равно значению предыдущей дроби, поскольку срабатывает основное свойство дроби, которое говорит о том что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь.

Также, дроби можно сокращать, предварительно разложив на простые множители числитель и знаменатель.

Например, сократим дробь Что находится сверху дроби, предварительно разложив на простые множители числитель и знаменатель:

Что находится сверху дроби

Итак, мы разложили числитель и знаменатель дроби Что находится сверху дробина множители. Теперь применяем второй способ сокращения. В числителе и в знаменателе выбираем по множителю и делим выбранные множители на НОД этих множителей.

Давайте сократим по тройке в числителе и в знаменателе. Для этого разделим эти тройки на 3 (на их наибольший общий делитель). Получим следующее выражение: Что находится сверху дроби

Сократить можно ещё по тройке в числителе и в знаменателе:

Что находится сверху дроби

Дальше сокращать больше нéчего. Последнюю тройку в знаменателе просто так сократить нельзя, поскольку в числителе нет множителя, который можно было бы сократить вместе с этой тройкой.

Записываем новую дробь, в числителе и в знаменателе которой будут новые множители.

Что находится сверху дроби

Получили ответ Что находится сверху дроби. Значит, при сокращении дроби Что находится сверху дробиполучается новая дробь Что находится сверху дроби.

Не рекомендуется пользоваться вторым способом сокращения дроби и способом разложения на простые множители числителя и знаменателя, если человек только нáчал изучать математику. Практика показывает, что это оказывается сложным на первых этапах.

Поэтому, если испытываете затруднения при использовании второго способа, то пользуйтесь старым добрым способом сокращения: делите числитель и знаменатель дроби на их наибольший общий делитель. Выражение в таком случае получается простым, понятным и красивым. Так, предыдущий пример может быть решён старым способом и будет выглядеть так:

Что находится сверху дроби

Сравните это выражение с выражением, которое мы получили, когда пользовались вторым способом:

Что находится сверху дроби

Первое выражение намного понятнее, аккуратнее и короче. Не правда ли?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *