Что мы понимаем под строением органических веществ
Основные положения органической химии
Органическая химия – это химия углеводородов и их производных.
Углеводороды (УВ) – это простейшие органические вещества, молекулы которых состоят из атомов только двух элементов: С и Н. Например: СН4, С2Н6, С6Н6 и т.д.
Производные УВ – это продукты замещения атомов «Н» в молекулах УВ на другие или группы атомов. Например:
Название «органическая химия» появилось в начале XIX в., когда было установлено, что углеродсодержащие вещества являются основой растительных и животных организмов.
До 20-х годов XIX в. многие ученые считали, что органические вещества нельзя получить в лаборатории из неорганических веществ, что они образуются только в живой природе при участии особой «жизненной силы». Учение о «жизненной силе» называется витализмом.
А.М. Бутлеров
Это учение просуществовало недолго, потому что уже в начале и середине XIX в. были синтезированы многие органические вещества:
1828 г. – Велер синтезирует мочевину CO(NH2)2, которая является одним из продуктов, образующихся в организме;
1850-е гг. – Бертло синтезирует жиры;
1861 г. – Бутлеров синтезировал один из углеводов.
Сейчас известно более 10 млн органических веществ; многие из них не существуют в природе, а получены в лаборатории. Промышленный синтез различных органических веществ является одним из основных направлений химической промышленности.
Кроме С и Н, в состав многих органических веществ входят следующие элементы: O, N, S, P, Cl, Br и др.
Принципиального различия между органическими и неорганическими веществами нет. Однако типичные органические вещества имеют ряд свойств, которые отличают их от типичных неорганических веществ. Это объясняется различием в характере химической связи:
Основные положения теории химического строения органических соединений
Эту теорию разработал русский ученый А.М. Бутлеров (1858 – 1861).
I положение. Атомы в молекулах органических веществ соединяются друг с другом в определенной последовательности согласно их валентности.
Последовательность соединения атомов в молекуле называется химическим строением (структурой).
В органических соединениях атомы углерода могут соединяться друг с другом, образуя цепи (углеродный скелет). В зависимости от наличия тех или иных атомов углерода цепи бывают:
а) прямые (неразветвленные) – содержат два первичных атома углерода (крайние в цепи), остальные атомы – вторичные; например:
б) разветвленные – содержат хотя бы один третичный или хотя бы один четвертичный атом углерода; например:
в) замкнутые (циклы) – не содержат первичных атомов углерода; например:
II положение. Свойства веществ зависят не только от состава, но и от строения их молекул.
Например, существуют 2 различных вещества, которые имеют одинаковый состав, выражаемый эмпирической формулой С2Н6О:
Изомеры – это вещества, которые имеют одинаковый состав, но разное строение молекул и различные свойства.
Изомерия – явление существования изомеров.
Изомеры имеют одинаковую эмпирическую формулу и разные структурные формулы. С увеличением числа атомов углерода в молекуле число изомеров резко возрастает; например:
Типы изомерии
1. Структурная изомерия
2. Пространственная изомерия (геометрическая изомерия, цис-транс-изомерия)
Порядок соединения атомов в этих изомерах одинаковый, но расположение атомов в пространстве различно.
3. Межклассовая изомерия – изомерия веществ, принадлежащих к разным классам органических соединений:
III положение. В молекулах органических веществ атомы и группы атомов влияют друг на друга. Это взаимное влияние определяет свойства веществ.
Рассмотрим, например, влияние ОН-группы на подвижность атомов «Н» в цикле бензола:
В бензольном ядре замещается один атом водорода.
При наличии группы – ОН в бензольном ядре замещаются три атома водорода.
С другой стороны, углеводородный радикал влияет на подвижность атома водорода в ОН-группе:
Если группа – ОН связана с бензольным кольцом, атом водорода в ней является подвижным и может замещаться на атом металла при взаимодействии со щелочью.
Если группа – ОН связана с алкильным радикалом, подвижность атома водорода в ней невелика, и он не может замещаться на металл при действии щелочи.
Гомологический ряд. Гомологи
Гомологический ряд – это ряд органических соединений, в котором каждый следующий член ряда отличается от предыдущего на группу СН2. Сходные по химическим свойствам соединения, образующие гомологический ряд, называются гомологами. Группа СН2 называется гомологической разностью.
Состав всех членов гомологического ряда может быть выражен общей формулой.
Классификация органических веществ
Большинство органических соединений можно представить формулой: R – X, где R – углеводородный радикал; Х – функциональная группа.
Функциональные группы – это группы атомов, которые определяют наиболее характерные химические свойства органических соединений. Углеводородные радикалы – остатки УВ, связанные с функциональными группами.
1. Классификация органических веществ по строению углеводородного радикала (R)
2. Классификация органических веществ по функциональным группам (Х)
Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах
Содержание:
Что такое органическая химия?
Органическая химия – это раздел химии, который изучает структуру, свойства и методы получения (синтеза) углеводородов и их производных. Сейчас число известных органических соединений составляет почти 30 млн, однако оно продолжает расти (в мае 1999 года было известно около 12 млн органических веществ). Этот рост обусловлен необычными свойствами углерода. Например, данный элемент может образовать цепи любой длины, способные замыкаться и образовывать циклы, а также атом углерода способен создавать одинарные, двойные или тройные связи. Валентность углерода всегда равна 4-м, поэтому он всегда будет создавать вокруг себя 4 связи. Это могут быть четыре одинарных, две двойных, одна тройная и одна одинарная и др. В любом случае, способов образовывать связи много, однако чаще всего углерод связывается с водородом, кислородом, фосфором, азотом и некоторыми другими атомами этих элементов.
Теория строения органических соединений
Ещё в глубокой древности люди могли получать органические вещества, но теория их строения была сформулирована только в 1860-х годах русским химиком Александром Михайловичем Бутлеровым. Теория получила название в честь своего автора и стала фундаментом органической химии. До возникновения этой теории существовала такая точка зрения, что органические вещества нельзя получить из неорганических, то есть для их синтеза необходима некая сила, существующая только у живых организмов. Естественно, что появление теории, противоречащей всем знаниям в области органики, вызвало непонимание у химиков того времени. Научившись самостоятельно синтезировать органические вещества, ученые столкнулись с соединениями с одинаковой молекулярной формулой и молярной массой, но абсолютно другими свойствами. Например, диметиловый эфир при нормальных условиях представляет собой газ, а этиловый спирт, имеющий такой же состав, – жидкость. Подобные соединения стали называть изомерами, а явление – изомерией.
Основные положения теории Бутлерова
Данная теория оказала сильное влияние на скорость развития органической химии. С ее помощью А.М. Бутлеров объяснил явление изомерии, а также самостоятельно получил некоторые изомеры, в очередной раз доказав верность своих мыслей.
Гомология и изомерия.
Гомология (от греч. «подобный») – явление, при котором вещества имеют похожие строение и свойства, но отличаются между собой по молекулярному составу на одну или несколько групп CH2. Например алканы: CH4(метан), C2H6(этан), C3H8(пропан), C4H10(бутан). В органической химии существуют целые гомологические ряды. У каждого класса органических веществ есть свой гомологический ряд, отражающий общую формулу соединений, входящих в него.
Гомологический ряд алканов
Формула
Название вещества
Изомерия (от греч. «равный») – явление, при котором вещества имеют похожий количественный и качественный состав, но разные строение и свойства. Изомерия бывает структурная и пространственная.
Структурная изомерия
Структурные изомеры – вещества одинакового количественного и качественного состава, но разного химического строения. Структурная изомерия бывает 3-х типов.
Изомерия углеродного скелета
(В 1-м случае CH3 – часть углеродной цепи, а во 2-м – радикал).
Изомерия положения
(Меняется положение двойной связи. В 1-м случае двойная связь у первого атома углерода, а во 2-м – у второго).
2.2 функциональной группы
(Меняется положение гидроксогруппы от 1-го атома углерода ко 2-му).
(Меняется положение атома хлора (галогена) от 1-го атома углерода ко 2-му).
Межклассовая изомерия
(Меняется класс вещества).
Пространственная изомерия
Пространственные изомеры (стереоизомеры) – вещества одинакового количественного и качественного состава и одинакового химического строения, отличающихся друг от друга пространственным расположением атомов в молекуле. Пространственная изомерия бывает 2-х типов.
Геометрическая изомерия
Встречается у веществ, имеющих цикл или двойную (С=С) связь. Данный вид пространственной изомерии еще называют цис – и – транс изомерией.
(Атом водорода и группа CH3 меняются местами).
Оптическая изомерия
Суть оптической изомерии заключается в том, что если атом углерода в молекуле связан с 4-мя различными атомами или атомными группами, то из него можно получить два соединения с одинаковой структурой, молекулы которых будут являться зеркальными копиями друг друга (как правая и левая руки человека). В пример можно привести D-глюкозу и L-клюкозу.
Взаимное влияние атомов в молекулах
С момента появления электронной теории химической связи (1912-1916 гг.) знания о структуре химических соединений, как о последовательности соединенных атомов, были значительно пополнены. Данная теория объясняет причину влияния атомов или групп атомов внутри молекулы друг на друга. Всего существует два способа такого взаимодействия.
Индуктивный эффект
Мезомерный эффект
Заключение
Органическая химия играет большую роль в существовании живых организмов. С давних времен люди пытались разгадать тайны органических веществ, но стремительно развиваться этот раздел химии начал только в середине XIX века. Разгадав тайны строения этих соединений, люди продолжили двигаться вперед, открывая новое и в большинстве случаях полезное для человечества (например, препарат пенициллин). Прочитав данную статью, вы узнали о теории А.М. Бутлерова, о таких явлениях как гомология и изомерия и о взаимном влиянии атомов в молекулах. Все эти открытия, сделанные людьми несколько столетий назад, являются основами органической химии по сей день.
Что мы понимаем под строением органических веществ
I. Предмет органической химии
К началу XXI века химики выделили в чистом виде миллионы веществ. При этом известно более 18 миллионов соединений углерода и меньше миллиона соединений всех остальных элементов.
Рост числа известных органических соединений
Соединения углерода в основном относят к органическим соединениям.
Вещества стали разделять на органические и неорганические с начала XIX века. Органическими называли тогда вещества, выделенные из животных и растений, а неорганическими – добытые из минералов. Именно через органический мир проходит основная часть круговорота углерода в природе.
Круговорот углерода в природе
Из соединений, содержащих углерод, к неорганическим традиционно относят графит, алмаз, оксиды углерода (CO и CO2), угольную кислоту (H2CO3), карбонаты (например, карбонат натрия – сода Na2CO3), карбиды (карбид кальция CaC2), цианиды (цианистый калий KCN), роданиды (роданистый натрий NaSCN).
Более точное современное определение: органические соединения – это углеводороды и их производные.
Производные углеводородов – это углеводороды, в которых один или несколько атомов водорода замещены атомом или группой атомов других элементов. Например, один из атомов водорода в метане можно заместить на хлор, или на группу ОН, или на группу NH2.
В состав органических соединений, кроме атомов углерода и водорода, могут входить атомы кислорода, азота, серы, фосфора, реже галогенов.
Чтобы оценить значение органических соединений, которые нас окружают, представим себе, что они вдруг исчезли. Нет деревянных предметов, книг и тетрадей, нет сумок для книг и шариковых ручек. Исчезли пластмассовые корпуса компьютеров, телевизоров и других бытовых приборов, нет телефонов и калькуляторов. Без бензина и дизельного топлива встал транспорт, нет большинства лекарств и просто нечего есть. Нет моющих средств, одежды, да и нас с вами…
Органических веществ так много из-за особенностей образования химических связей атомами углерода. Эти небольшие атомы способны образовывать прочные ковалентные связи друг с другом и с неметаллами-органогенами.
В молекуле этана С2Н6 друг с другом связаны 2 атома углерода, в молекуле пентана С5Н12 – 5 атомов, а в молекуле всем известного полиэтилена сотни тысяч атомов углерода.
Строение, свойства и реакции органических веществ изучает органическая химия.
II. Предпосылки создания теории химического строения органических веществ
Органическая химия изучает соединения, основу которых составляют атомы углерода, связанные между собой и многими элементами периодической системы простыми и кратными связями, способные образовывать линейные и разветвленные цепи, циклы, полициклы и др.
Историческая справка
Впервые понятия об органических веществах и об органической химии ввёл шведский учёный Берцелиус. В своём учебнике химии Берцелиус (1827) высказывает убеждение, что «. в живой природе элементы повинуются иным законам, чем в безжизненной» и что органические вещества не могут образовываться под влиянием обычных физических и химических сил, но требуют для своего образования особой «жизненной силы». Органическую химию он и определил, как химию растительных и животных веществ. Последующее развитие органической химии доказало ошибочность этих взглядов.
В 1928 году Вёллер показал, что неорганическое вещество-циановокислый аммоний-при нагревании превращается в продукт жизнедеятельности животного организма-мочевину.
В 1845 г. Кольбе синтезировал органическое вещество-уксусную кислоту, в качествеисходных веществ он использовал древесный уголь, серу, хлор и воду. За сравнительно короткий период были синтезированы и другие органические кислоты, которые раньше выделялись только из растений.
В 1854 г. Бертло удалось синтезировать вещества, относящиеся к классу спиртов.
В 1861 г. А.М.Бутлеров действуя известковой водой на параформальдегид впервые осуществил синтез метиленитана, которое относится к сахарам, которые играют важную роль в процессах жизнедеятельности организмов.
Фильм: “Александр Бутлеров – великий русский химик”
Вывод:
1. Атомы в молекулах соединены друг с другом в определённом порядке, согласно их валентностям ( C(IV), O(II), S(II), N(III) ),
2. Порядок соединения атомов – химическое строение.
3. Свойства веществ зависят не только от их качественного и количественного состава, но и от химического строения
4.Явление существования веществ с одинаковым качественным и количественным составом, но разным химическим строением, называется изомерией, а вещества изомерами.
5. Атомы и группы атомов в молекуле взаимно влияют друг на друга.
Значение теории – предсказание свойств по строению, возможность систематизации соединений, предсказание и синтез новых соединений.
6. Многообразие органических соединений объясняется:
3.1. Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах.
Органическая химия — раздел химии, в котором изучают соединения углерода, их строение, свойства, взаимопревращения.
Само название дисциплины — «органическая химия» — возникло достаточно давно. Причина его кроется в том, что большинство соединений углерода, с которыми сталкивались исследователи на начальном этапе становления химической науки, имели растительное или животное происхождение. Тем не менее, в порядке исключения, отдельные соединения углерода относят к неорганическим. Так, например, неорганическими веществами принято считать оксиды углерода, угольную кислоту, карбонаты, гидрокарбонаты, циановодород и некоторые другие.
В настоящее время известно чуть менее 30-ти миллионов разнообразных органических веществ и этот список непрерывно пополняется. Такое огромное число органических соединений связано, прежде всего, со следующими специфическими свойствами углерода:
1) атомы углерода могут соединяться друг с другом в цепи произвольной длины;
2) возможно не только последовательное (линейное) соединение атомов углерода между собой, но также разветвленное и даже циклическое;
3) возможны разные виды связей между атомами углерода, а именно одинарные, двойные и тройные. При этом валентность углерода в органических соединениях всегда равна четырем.
Помимо этого, большому разнообразию органических соединений способствует также и то, что атомы углерода способны образовывать связи и с атомами многих других химических элементов, например, водородом, кислородом, азотом, фосфором, серой, галогенами. При этом водород, кислород и азот встречаются наиболее часто.
Следует отметить, что довольно долго органическая химия представляла для ученых «темный лес». Какое-то время в науке даже была популярна теория витализма, согласно которой органические вещества не могут быть получены «искусственным» способом, т.е. вне живой материи. Однако теория витализма просуществовала не очень долго, ввиду того что одно за одним обнаруживались вещества, синтез которых возможен вне живых организмов.
У исследователей вызывало недоумение то, что многие органические вещества имеют одинаковый качественный и количественный состав, однако часто обладают совершенно непохожими друг на друга физическими и химическими свойствами. Так, например, диметиловый эфир и этиловый спирт имеют абсолютно одинаковый элементный состав, однако диметиловый эфир в обычных условиях представляет собой газ, а этиловый спирт – жидкость. Кроме того, диметиловый эфир с натрием не реагирует, а этиловый спирт взаимодействует с ним, выделяя газообразный водород.
Исследователями XIX века было выдвинуто множество предположений касательно того, как все-таки устроены органические вещества. Существенно важные предположения были выдвинуты немецким ученым Ф.А.Кекуле, который первый высказал идею о том, что атомы разных химических элементов имеют конкретные значения валентностей, а атомы углерода в органических соединениях четырехвалентны и способны объединяться друг с другом, образуя цепи. Позднее, отталкиваясь от предположений Кекуле, российский ученый Александр Михайлович Бутлеров разработал теорию строения органических соединений, которая не потеряла свою актуальность и в наше время. Рассмотрим основные положения этой теории:
1) все атомы в молекулах органических веществ соединены друг с другом в определенной последовательности в соответствии с их валентностью. Атомы углерода имеют постоянную валентность, равную четырем, и могут образовывать друг с другом цепи различного строения;
2) физические и химические свойства любого органического вещества зависят не только от состава его молекул, но также и от порядка соединения атомов в этой молекуле между собой;
3) отдельные атомы, а также группы атомов в молекуле оказывают влияние друг на друга. Такое взаимное влияние отражается в физических и химических свойствах соединений;
4) исследуя физические и химические свойства органического соединения можно установить его строение. Верно также обратное – зная строение молекулы того или иного вещества, можно спрогнозировать его свойства.
Аналогично тому, как периодический закон Д.И.Менделева стал научным фундаментом неорганической химии, теория строения органических веществ А.М. Бутлерова фактически стала отправной точкой в становлении органической химии как науки. Следует отметить, что после создания теории строения Бутлерова органическая химия начала свое развитие очень быстрыми темпами.
Изомерия и гомология
Согласно второму положению теории Бутлерова, свойства органических веществ зависят не только от качественного и количественного состава молекул, но и от порядка соединения атомов в этих молекулах между собой.
В связи с этим, среди органических веществ широко распространено такое явление как изомерия.
Изомерия – явление, когда разные вещества имеют абсолютно одинаковый состав молекул, т.е. одинаковую молекулярную формулу.
Очень часто изомеры сильно отличаются по физическим и химическим свойствам. Например:
Типы изомерии
Структурная изомерия
а) Изомерия углеродного скелета
б) Изомерия положения:
в) Межклассовая изомерия:
Межклассовая изомерия имеет место, когда соединения, являющиеся изомерами, относятся к разным классам органических соединений.
Пространственная изомерия
Пространственная изомерия — явление, когда разные вещества при одинаковом порядке присоединения атомов друг к другу отличаются друг от друга фиксировано-различным положением атомов или групп атомов в пространстве.
Существует два типа пространственной изомерии – геометрическая и оптическая. Задания на оптическую изомерию на ЕГЭ не встречаются, поэтому рассмотрим только геометрическую.
Если в молекуле какого-либо соединения есть двойная C=C связь или цикл, иногда в таких случаях возможно явление геометрической или цис-транс-изомерии.
Например, такой вид изомерии возможен для бутена-2. Смысл ее заключается в том, что двойная связь между атомами углерода фактически имеет плоское строение, а заместители при этих атомах углерода могут фиксированно располагаться либо над, либо под этой плоскостью:
Когда одинаковые заместители находятся по одну сторону плоскости говорят, что это цис-изомер, а когда по разные — транс-изомер.
На в виде структурных формул цис- и транс-изомеры (на примере бутена-2) изображают следующим образом:
Отметим, что геометрическая изомерия невозможна в случае, если хотя бы у одного атома углерода при двойной связи будет два одинаковых заместителя. Так, например, цис-транс-изомерия невозможна для пропена:
Пропен не имеет цис-транс-изомеров, так как при одном из атомов углерода при двойной связи два идентичных «заместителя» (атомы водорода)
Как можно видеть из иллюстрации выше, если поменять местами метильный радикал и атом водорода, находящиеся при втором углеродном атоме, по разные стороны плоскости, мы получим ту же самую молекулу, на которую просто посмотрели с другой стороны.
Влияние атомов и групп атомов друг на друга в молекулах органических соединений
Понятие о химической структуре как о последовательности связанных друг с другом атомов было существенно расширено с появлением электронной теории. С позиций данной теории можно объяснить, каким образом атомы и группы атомов в молекуле оказывают влияние друг на друга.
Различают два возможных способа влияния одних участков молекулы на другие:
1) Индуктивный эффект
2) Мезомерный эффект
Индуктивный эффект
Для демонстрации данного явления возьмем для примера молекулу 1-хлорпропана (CH3CH2CH2Cl). Связь между атомами углерода и хлора является полярной, поскольку хлор имеет намного более высокую электроотрицательность по сравнению с углеродом. В результате смещения электронной плотности от атома углерода к атому хлора на атоме углерода формируется частичный положительный заряд (δ+), а на атоме хлора — частичный отрицательный (δ-):
Смещение электронной плотности от одного атома к другому часто обозначают стрелкой, направленной к более электроотрицательному атому:
Однако, интересным является такой момент, что, кроме смещения электронной плотности от первого атома углерода к атому хлора, также имеет место смещение, но в несколько меньшей степени от второго атома углерода к первому, а также от третьего ко второму:
Такое смещение электронной плотности по цепи σ-связей называют индуктивным эффектом (I). Данный эффект затухает по мере удаления от влияющей группы и уже практически не проявляется после 3 σ-связей.
В случае, когда атом или группа атомов обладают большей электроотрицательностью по сравнению с атомами углерода, говорят, что такие заместители обладают отрицательным индуктивным эффектом (-I). Таким образом, в рассмотренном выше примере отрицательным индуктивным эффектом обладает атом хлора. Кроме хлора, отрицательным индуктивным эффектом обладают следующие заместители:
Если электроотрицательность атома или группы атомов меньше электроотрицательности атома углерода, фактически происходит передача электронной плотности от таких заместителей к углеродным атомам. В таком случае говорят, что заместитель обладает положительным индуктивным эффектом (+I) (является электронодонорным).
Так, заместителями с +I-эффектом являются предельные углеводородные радикалы. При этом выраженность +I-эффекта возрастает с удлинением углеводородного радикала:
Мезомерный эффект (М), или эффект сопряжения, — влияние заместителя, передаваемое по системе сопряженных π-связей.
Отрицательным мезомерным эффектом (–М) обладают заместители, оттягивающие электронную плотность от сопряженной системы, при этом электронная плотность в системе уменьшается.
Отрицательным мезомерным эффектом обладают группы:
За счет перераспределения электронной плотности за счет мезомерного и индуктивного эффектов в молекуле на некоторых атомах появляются частичные положительные или отрицательные заряды, что имеет отражение в химических свойствах вещества.
Графически мезомерный эффект показывают изогнутой стрелкой, которая начинается в центре электронной плотности и завершается там, куда смещается электронная плотность. Так, например, в молекуле хлористого винила мезомерный эффект возникает при сопряжении неподеленной электронной пары атома хлора, с электронами π-связи между углеродными атомами. Таким образом, в результате этого на атоме хлора появляется частичный положительный заряд, а обладающее подвижностью π-электронное облако под воздействием электронной пары смещается в сторону крайнего атома углерода, на котором возникает вследствие этого частичный отрицательный заряд:
Если в молекуле имеются чередующиеся одинарные и двойные связи, то говорят, что молекула содержит сопряженную π-электронную систему. Интересным свойством такой системы является то, что мезомерный эффект в ней не затухает.