Что мы понимаем под направлением вектора
Определение вектора
В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.
Для начала дадим определение:
Вектор – это направленный отрезок прямой.
Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.
Нулевой вектор
Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.
Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.
Длина вектора
Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.
Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин «длина вектора». Очевидно, что длина нулевого вектора принимает значение ноль.
Коллинеарность векторов
Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными.
Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными.
Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.
Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.
Направление векторов
Считается, что нулевой вектор является сонаправленым к любым другим векторам.
Равные и противоположные векторы
Равными называются сонаправленные вектора, у которых длины равны.
Противопожными называются противоположно направленные вектора, у которых их длины равны.
Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.
Углы между векторами
Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .
Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.
Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).
Характеристики вектора: длина, направление, координаты
У любого вектора есть 2 главные характеристики:
Третья характеристика вектора – это его координаты.
Примечание:
Зная координаты вектора, можно найти его длину и направление. Поэтому, задавать информацию о векторе можно двояко: либо указав его длину и направление, либо его координаты.
Что такое координаты вектора
Координаты вектора – это длины его теней на осях координат (его проекции на оси).
Координаты вектора указывают так:
\( a_
\( a_
Координаты вектора можно получить из координат его начальной и конечной точек:
«координата вектора» = «конец» — «начало»
Пример:
\( A \left( 1;1 \right) \) — начальная точка,
\( B \left( 4;3 \right) \) — конечная точка,
\[ \overrightarrow
\[ \begin
Длина вектора (в чем измеряется, как посчитать)
Длину вектора (его модуль) обозначают так:
Как вычислить длину вектора по его координатам
Когда известны координаты вектора, его длину считают так:
\( a_
Для двухмерного вектора:
Для трехмерного вектора:
Как вычислить длину вектора с помощью рисунка
Если вектор нарисован на клетчатой бумаге, длину считаем так:
1). Если вектор лежит на линиях клеточек тетради:
— считаем количество клеточек.
Зная масштаб клеток, легко получить длину вектора – умножаем масштаб на количество клеток.
2). Если вектор не лежит вдоль линий:
— проводим вертикаль и горизонталь пунктиром.
\( \Delta x \) — горизонталь; \( \Delta y \) — вертикаль;
— затем применяем формулу:
Как указать направление вектора
Указать направление вектора можно с помощью его координат. Так как в его координатах уже содержится информация о длине и направлении вектора.
Бывает так, что координаты вектора неизвестны, а известна только лишь его длина. Тогда направление можно указать с помощью угла между вектором и какой-либо осью.
Для двумерного вектора
Если вектор двумерный, то для указания направления (см. рис. 10) можно использовать один из двух углов:
Словами указать направление вектора можно так:
Такой способ указания координат используют в полярной системе координат.
Для трехмерного вектора
Когда вектор располагается в трехмерном пространстве, чтобы указать, куда вектор направлен, используют два угла.
Такой способ указания координат используют в сферической системе координат.
Считаем Землю шаром. Расположим ее центр в начале трехмерной системы координат – точке (0 ; 0 ; 0).
Тогда координаты любой точки на поверхности планеты можно указать с помощью радиус-вектора этой точки.
Для указания сферических координат принято использовать:
Вектор, его направление и длина
Вектором называется упорядоченная пара точек. Первая точка называется началом вектора, вторая — концом вектора. Расстояние между началом и концом вектора называется его длиной. Вектор, начало и конец которого совпадают, называется нулевым, его длина равна нулю. Если длина вектора положительна, то его называют ненулевым. Ненулевой вектор можно определить также как направленный отрезок, т.е. отрезок, у которого одна из ограничивающих его точек считается первой (началом вектора), а другая — второй (концом вектора). Направление нулевого вектора, естественно, не определено.
Ненулевой вектор АВ кроме направленного отрезка определяет также содержащие его луч (с началом в точке ) и прямую (рис.1.1,а).
Коллинеарные векторы
Два ненулевых коллинеарных вектора называются одинаково направленными (сонаправленными), если они принадлежат параллельным прямым и их концы лежат в одной полуплоскости от прямой, проходящей через их начала (рис.1.2,а); либо, если векторы принадлежат одной прямой, и луч, определяемый одним вектором, целиком принадлежит лучу, определяемому другим вектором (рис. 1.2,6). В противном случае коллинеарные векторы называются противоположно направленными (рис.1.2,в,г). Одинаково направленные и противоположно направленные векторы обозначаются парами стрелок и соответственно. Понятия коллинеарных, одинаково направленных векторов распространяются на любое число векторов.
Компланарные векторы
Три ненулевых вектора называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях (рис.1.3,а), в противном случае они называются некомпланарными (рис. 1.3,6). Так как направление нулевого вектора не определено, он считается компланарным с любыми двумя векторами. Понятие компланарных векторов распространяется на любое число векторов.
Равные векторы
Два вектора называются равными, если они:
а) коллинеарны, одинаково направлены;
б) имеют равные длины.
Все нулевые векторы считаются равными друг другу.
Это определение равенства векторов характеризует так называемые свободные векторы. Данный свободный вектор можно переносить, не меняя его направления и длины, в любую точку пространства (откладывать от любой точки), при этом будем получать векторы, равные данному. Таким образом, свободный вектор определяет целый класс равных ему векторов, отличающихся только точкой приложения. Далее будут рассматриваться, как правило, свободные векторы, при этом слово «свободные» будет опускаться.
2. Отношение равенства векторов является отношением эквивалентности. В самом деле, для отношения равенства ( — «вектор равен вектору «), определенного на множестве упорядоченных пар векторов, выполняются следующие условия:
а) каждый вектор равен самому себе (рефлексивность);
Это означает, что множество векторов разбивается на непересекающиеся классы (см. разд.В.З), т.е. с каждым вектором связывается целый класс равных ему векторов, отличающихся только точками приложения. Поэтому говорят [37], что свободный вектор определяет класс равных ему векторов.
Используя это построение, можно дать эквивалентные определения коллинеарности и компланарности. Два ненулевых вектора называются коллинеарными, если после приложения их к одной точке они лежат на одной прямой. Три ненулевых вектора называются компланарными, если после приложения их к одной точке они лежат в одной плоскости.
5. Кроме свободных векторов в приложениях векторной алгебры используются скользящие векторы, связанные (приложенные) векторы и др., которые отличаются от свободных векторов определением равенства. Например, скользящие векторы называются равными, если они лежат на одной прямой, одинаково направлены и имеют равные длины. Другими словами, в отличие от свободного вектора, скользящий вектор можно переносить, не меняя направления и длины, только вдоль содержащей этот вектор прямой. Например, в механике сила, действующая на абсолютно твердое тело, изображается скользящим вектором, а угловая скорость — свободным вектором. Сила, действующая на деформируемое тело, является примером так называемого приложенного вектора. Изменение точки приложения силы приведет к изменению ее воздействия на тело.
Пример 1.1. Дан треугольник (рис. 1.6), точки — середины его сторон. Для векторов, изображенных на рис. 1.6, указать коллинеарные, одинаково направленные, противоположно направленные, равные.
Что такое вектор: определение, обозначение, виды
В данной публикации мы рассмотрим, что такое вектор, как он обозначается, а также какие виды бывают. Теоретическую информацию сопроводим рисунками для лучшего восприятия.
Определение вектора
Вектор – это направленный отрезок. Другими словами, это отрезок определенной длины, который направлен в конкретную сторону.
У вектора есть начало и конец. На рисунке ниже – это точки A и B, соответственно. Направление вектора показывается соответствующей стрелкой.
Примечание: нахождение длины вектора (| AB | или | a |) мы подробно рассмотрели в отдельной публикации.
Виды векторов
2. Единичный – вектор, длина которого равна единице. Также называется ортом.
3. Коллинеарные – векторы лежат на одной и той же или на параллельных прямых.
4. Сонаправленные – коллинеарные векторы, направления которых совпадает. Например, на рисунке ниже a и b являются сонаправленными.
5. Противоположно направленные – коллинеарные векторы, направления которых противоположны.
6. Компланарные – векторы, параллельные одной плоскости или лежащие на одной плоскости.
Примечание: любые два вектора компланарны, так как всегда найдется плоскость, параллельная им обоим.
7. Равные – векторы, имеющие одинаковую длину и направление, а также лежащие на одной или параллельных прямых.
Примечание: для вектора AB в произвольной точке C пространства удастся построить только один единственный вектор (например, CD ) той же длины.
Векторы для чайников. Действия с векторами.
Координаты вектора. Простейшие задачи с векторами
Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии. Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод, понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.
Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:
1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии, авторы – Л.С. Атанасян и Компания. Сия вешалка школьной раздевалки уже выдержала 20 (!) переизданий, что, конечно, не является пределом.
2) Геометрия в 2 томах. Авторы Л.С. Атанасян, Базылев В.Т. Это литература для высшей школы, вам потребуется первый том. Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.
Из инструментальных средств предлагаю собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.
Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)
А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов, а также Линейная (не) зависимость векторов. Базис векторов и Векторное и смешанное произведение векторов. Не лишней будет и локальная задача – Деление отрезка в данном отношении. На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений, что позволит научиться решать задачи по геометрии. Также полезны следующие статьи: Уравнение плоскости в пространстве, Уравнения прямой в пространстве, Основные задачи на прямую и плоскость, другие разделы аналитической геометрии. Естественно, попутно будут рассматриваться типовые задания.
Более того, по материалам сайта создана книга!
. да, это свершилось! – освойте азы теории и научитесь решать в кратчайшие сроки! Спасибо за поддержку проекта.
Понятие вектора. Свободный вектор
Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:
В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.
Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.
. Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.
Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: , но допустима и запись , которую я буду использовать в дальнейшем. Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: , подразумевая тем самым, что это вектор.
То была стилистика, а сейчас о способах записи векторов:
1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.
2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор можно для краткости переобозначить маленькой латинской буквой .
Длиной или модулем ненулевого вектора называется длина отрезка . Длина нулевого вектора равна нулю. Логично.
Длина вектора обозначается знаком модуля: ,
Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.
То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор.
Если совсем просто – вектор можно отложить от любой точки:
Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор. Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной «школьный» вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте направленный отрезок произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё почти корректно – направленный отрезок можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)
Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.
Далее, если не оговаривается иное, речь пойдёт только о свободных векторах.
Действия с векторами. Коллинеарность векторов
В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.
Правило сложения векторов по правилу треугольников
Рассмотрим два произвольных ненулевых вектора и :
Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора :
Суммой векторов и является вектор . Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору , а затем по вектору . Тогда сумма векторов представляет собой вектор результирующего пути с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.
Кстати, если вектор отложить от начала вектора , то получится эквивалентное правило параллелограмма сложения векторов.
Умножение вектора на число
Сначала о коллинеарности векторов. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».
Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными. Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены.
Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).
Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .
Правило умножения вектора на число легче понять с помощью рисунка:
Разбираемся более детально:
1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.
2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается. Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.
3) Обратите внимание, что все векторы коллинеарны, при этом один вектор выражен через другой, например, . Обратное тоже справедливо: если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор.
4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.
Какие векторы являются равными?
Два вектора равны, если они сонаправлены и имеют одинаковую длину. Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».
С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.
Координаты вектора на плоскости и в пространстве
Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы и :
Векторы и ортогональны. Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность.
Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: .
Рассматриваемые векторы называют координатными векторами или ортами. Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов. Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.
Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.
Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами.
Любой вектор плоскости единственным образом выражается в виде:
, где – числа, которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .
! ВСЕМ настоятельно рекомендую прочитать ВСЁ!
Начнем с первой буквы алфавита: . По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
1) правило умножения вектора на число: и ;
2) сложение векторов по правилу треугольника: .
А теперь мысленно отложите вектор от любой другой точки плоскости. Совершенно очевидно, что его разложение будет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы не обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.
Векторы , иллюстрируют в точности правило умножения вектора на число, вектор сонаправлен с базисным вектором , вектор направлен противоположно по отношению к базисному вектору . У данных векторов одна из координат равна нулю, дотошно можно записать так:
А базисные векторы, к слову, так: (по сути, они выражаются сами через себя).
И, наконец: , . Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: , . Проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.
Рассмотренное разложение вида иногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:
Или со знаком равенства:
Сами базисные векторы записываются так: и
То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.
Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя. Строго на первом месте записываем координату, которая соответствует единичному вектору , строго на втором месте записываем координату, которая соответствует единичному вектору . Действительно, и – это ведь два разных вектора.
С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:
Перед вами ортонормированный базис трехмерного пространства и прямоугольная система координат, единичные векторы данного базиса попарно ортогональны: и . Ось наклонена под углом 45 градусов только для того, чтобы складывалось визуальное впечатление пространства. О том, как правильно выполнять плоские и трехмерные чертежи на клетчатой бумаге, читайте в самом начале методички Графики и свойства функций.
Любой вектор трехмерного пространства можно единственным способом разложить по ортонормированному базису :
, где – координаты вектора (числа) в данном базисе.
Пример с картинки: . Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: (красная стрелка), (зеленая стрелка) и (малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: . Вектор суммы начинается в исходной точке отправления (начало вектора ) и утыкается в итоговую точку прибытия (конец вектора ).
Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор от любой другой точки, и вы поймёте, что его разложение «останется при нём».
Аналогично плоскому случаю, помимо записи широко используются версии со скобками: либо .
Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем .
Базисные векторы записываются следующим образом:
Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.
А мы переходим к практической части:
Простейшие задачи аналитической геометрии.
Действия с векторами в координатах
Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть, даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.
Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.
Как найти вектор по двум точкам?
Если даны две точки плоскости и , то вектор имеет следующие координаты:
Если даны две точки пространства и , то вектор имеет следующие координаты:
То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора.
Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.
Даны две точки плоскости и . Найти координаты вектора
Решение: по соответствующей формуле:
Как вариант, можно было использовать следующую запись:
Эстеты решат и так:
Лично я привык к первой версии записи.
Ответ:
По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:
Обязательно нужно понимать различие между координатами точек и координатами векторов:
Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.
Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании или необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости (во избежание путаницы переобозначив, например, через ). Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .
Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.
Дамы и господа, набиваем руку:
а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .
Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится ;-). Чертежи делать не нужно. Решения и ответы в конце урока.
Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)
Как найти длину отрезка?
Длина, как уже отмечалось, обозначается знаком модуля.
Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле
Если даны две точки пространства и , то длину отрезка можно вычислить по формуле
Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант
Даны точки и . Найти длину отрезка .
Решение: по соответствующей формуле:
Ответ:
Для наглядности выполню чертёж
Отрезок – это не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.
Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:
Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».
Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:
Обратите внимание на важный технический приём – вынесение множителя из-под корня. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.
Вот другие распространенные случаи:
Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.
Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.
В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.
Давайте заодно повторим возведение корней в квадрат и другие степени:
Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.
Задание для самостоятельного решения с отрезком в пространстве:
Даны точки и . Найти длину отрезка .
Решение и ответ в конце урока.
Как найти длину вектора?
Если дан вектор плоскости , то его длина вычисляется по формуле .
Если дан вектор пространства , то его длина вычисляется по формуле .
Данные формулы (как и формулы длины отрезка) легко выводятся с помощью небезызвестной теоремы Пифагора.
Даны точки и . Найти длину вектора .
Я взял те же точки, что и в Примере 3.
Решение: Сначала найдём вектор :
По формуле вычислим длину вектора:
Ответ:
Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? С моей точки зрения, лишним не будет, отсутствие приближенного значения тянет на придирку. Округление целесообразно проводить до 2-3 знаков после запятой.
Выполним чертеж к задаче:
В чём принципиальное отличие от Примера 3? Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости, при этом его лучше переобозначить, например, через .
А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка равна длине вектора . Так же очевидно, что длина вектора будет такой же. По итогу:
Задачу 3 можно было решить и вторым способом, повторю условие: Даны точки и . Найти длину отрезка .
Вместо применения формулы , поступаем так:
1) Находим вектор .
2) А теперь ссылаемся на то, что длина отрезка равна длине вектора :
Этот способ широко практикуется в ходе решений задач аналитической геометрии.
Вышесказанное справедливо и для пространственного случая
а) Даны точки и . Найти длину вектора .
б) Даны векторы , , и . Найти их длины.
Решения и ответы в конце урока.
Действия с векторами в координатах
В первой части урока мы рассматривали правила сложения векторов и умножения вектора на число. Но рассматривали их с принципиально-графической точки зрения. Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов:
1) Правило сложения векторов. Рассмотрим два вектора плоскости и . Для того, чтобы сложить векторы, нужно сложить их соответствующие координаты: . Как просто. На всякий случай запишу частный случай – формулу разности векторов: . Аналогичное правило справедливо для суммы любого количества векторов, добавим например, вектор и найдём сумму трёх векторов:
Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы , то их суммой является вектор .
2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор умножить на число , нужно каждую координату данного вектора умножить на число :
.
Для пространственного вектора правило такое же:
Приведённые факты строго доказываются в курсе аналитической геометрии.
Примечание: Данные правила справедливы не только для ортонормированных базисов , но и для произвольного аффинного базиса плоскости или пространства. Более подробно о базисах читайте в статье Линейная (не) зависимость векторов. Базис векторов.
Даны векторы и . Найти и
Решение чисто аналитическое:
Ответ:
Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе , то графическое решение задачи будет таким:
Коль скоро речь идет только о векторах в ортонормированном базисе, то оси рисовать не обязательно. Достаточно начертить базисные векторы, причём, где угодно. Ну, и координатную сетку для удобства. Строго говоря, ранее я допустил небольшой огрех – в некоторых чертежах урока тоже можно было не чертить декартову прямоугольную систему координат. Векторам она не нужна, им нужен базис. Впрочем, лучше всегда рисуйте, а то напугаете всех своими знаниями =)
Как видите, графический способ решения привёл к тем же результатам, что и аналитический способ решения. Ещё раз заметьте свободу векторов: любую из трёх «конструкций» можно переместить в любую точку плоскости.
Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо):
Даны векторы и . Найти и
Решение: Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем:
Ответ:
И в заключение занятный пример с векторами на плоскости:
Даны векторы . Найти и
Это задача для самостоятельного решения.
Какой вывод? Многие задачи аналитической геометрии прозрачны и просты, главное, не допустить вычислительных ошибок. Следующие рекомендуемые к изучению уроки:
Это, так скажем, вектор-минимум студента =)
Любите векторы, и векторы полюбят вас!
Задание: ,
Пример 2: Решение:
а)
б)
в)
г)
Пример 4: Решение:
По соответствующей формуле: и
Ответ:
Пример 6: и
а) Решение: найдём вектор :
Вычислим длину вектора:
Ответ:
б) Решение:
Вычислим длины векторов:
Пример 9: Решение:
Примечание: Перед выполнением действий можно предварительно раскрыть скобки:
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам