Что можно узнать о звездах и планетах
60 удивительных фактов о Вселенной, которые вы должны знать
Наша Вселенная – удивительное и странное место. Часто очень трудно поверить в то, что говорят ученые! Поэтому сегодня, вместо того, чтобы писать о какой-то конкретную теме, мы решили написать о случайных и интересных фактах Вселенной.
Поверьте нам, это будет весело!
№1. Если вы распутаете свою ДНК, то она окажется длиной в 54,72 миллиарда километров, и будет простираться от Земли до Плутона, и обратно на Землю 13 раз!
№2. Знаете ли вы, что 99,99% обычной материи состоит из пустого пространства? Если вы удалите всё пустое пространство, вся человеческая раса (население мира) поместится в крошечный кусочек сахара.
№3. Атомы, из которых состоит наше тело, такие как кальций, железо и другие, были созданы в центре взрывающихся звезд несколько миллиардов лет назад.
№4. Фактически, атомы водорода, которые присутствуют в нашем организме, образовались в результате Большого взрыва, который произошел около 13,7 миллиардов лет назад.
№5. Одним из самых странных фактов Вселенной является то, что только 5% всей Вселенной видимы, а остальные, то есть 95%, составляют темная материя и темная энергия. Видимая Вселенная – это нечто, что очевидно видно (звезды, галактики и т. д.). Из оставшихся 95% Вселенной темная энергия составляет 68%, а темная материя – 27%. Это означает, что мы знаем только 5% всей нашей Вселенной…
Туманность Пузырь (также именуется как NGC 7635) относится к группе эмиссионных туманностей.
№6. Вы знаете, что такое нейтронная звезда? Когда взрывается огромная звезда (звезда с минимум 8 солнечными массами), ядро образует другую звезду, называемую нейтронной звездой. Вы знаете, насколько они плотны? Чайная ложка их материи или материала может перевесить Эверест!
№7. Из-за взрыва, у нейтронной звезды может быть ошеломляющая скорость вращения, способная достигать 600 оборотов в секунду.
№8. Хотите знать, сколько звезд в нашей Вселенной? Во всей нашей Вселенной существует три секстиллионов звезд, то есть 300 000 000 000 000 000 000 000. Для ленивых – 23 нуля после 3!
№9. Общее количество звезд в нашей Вселенной больше, чем общее количество песчинок, присутствующих на Земле.
№10. Солнце огромно, но насколько оно велико? Оно составляет 99,86% массы Солнечной системы.
№12. Еще один интересный факт заключается в том, что Венера – единственная планета нашей Солнечной системы, которая вращается в обратно направлении!
№13. Если вы просто дотронетесь до двух кусков одного и того же вида металла вместе в вакууме или пространстве, они будут плавиться и объединяться.
Космическому телескопу НАСА Хабблу удалось заново взглянуть на одно из наиболее знаковых и популярных мест во Вселенной. Речь идет о Столпах Творения в туманности Орел.
№14. Мы полагаем, что вы знаете, что звуку нужна среда, чтобы путешествовать, и он не может путешествовать в вакууме. Пространство – это вакуум, и поэтому космическое пространство чрезвычайно тихо.
№15. Некоторые звезды настолько далеки от нас, что нам потребуются годы, чтобы увидеть их свет, а это значит, что мы смотрим в прошлое в нашем настоящем! Телескоп НАСА Хаббл может видеть во Вселенной события, которые произошли около 100 миллионов лет назад.
№17. Знаете ли вы, что наша Вселенная расширяется? Эдвин Хаббл сделал это удивительное открытие в 1920-х годах.
№18. В 1998 году космический телескоп Хаббл сделал еще одно удивительное открытие. Он изучал чрезвычайно далекие сверхновые и обнаружил, что Вселенная расширялась с ускорением. Предполагается, что темная энергия – это та сила, которая заставляет Вселенную расширяться.
№19. В том же году было также доказано, что Вселенная не только расширяется, но и ускоряется. Снова предполагается, что темная энергия разрывает таким образом космос на части. По мнению двух групп исследователей, чем дальше галактики находятся от Земли, тем быстрее они удаляются от Земли.
№20. Один из не менее удивительных фактов Вселенной – то, что форма Вселенной зависит от ее плотности. Она зависит от силы тяжести и скорости расширения. Если плотность Вселенной превышает критическое значение, Вселенная считается замкнутой, как сфера. И это означает, что Вселенная в конечном итоге прекратит расширяться и начнет взрываться. Это один из сценарий будущего и называется он – Большое Сжатие (Большой Хлопок).
№21. Если плотность Вселенной меньше критического значения, тогда Вселенная называется открытой. Вселенная бесконечна и может расширяться вечно.
№122. Если ее плотность в точности равна критической плотности, то форма Вселенной считается плоской. Даже здесь Вселенная продолжает расширяться медленнее с течением времени и в конечном итоге перестает расширяться после бесконечного периода времени.
Порой космические туманности на фото приобретают удивительные формы. Кажется, будто перед нами невиданное чудовище, поднявшее голову из малинового моря. Однако в реальности это всего лишь прекрасный столп газа и пыли, именованный туманностью Конус (NGC 2264).
№23. Если верить недавним исследованиям или измерениям, форма Вселенной плоская с погрешностью 2%.
№25. Черные дыры образуются, когда очень массивные звезды сжимаются. Такой коллапс звезды также приводит к взрыву сверхновой. Гравитационная сила черных дыр настолько сильна, что ничто, буквально ничто не может вырваться из черных дыр. Даже свет.
№26. Ближайшая к Земле черная дыра находится на расстоянии около 10 000 световых лет от Земли.
№27. Скафандры, которые носят космонавты, сначала должны быть нагреты, затем охлаждены, затем герметизированы и, наконец, снабжены свежим воздухом.
№28. Астронавтам требуется шесть долгих часов, чтобы надеть эти скафандры.
№29. Луна является одной из основных причин, почему у нас есть приливы и волны на нашей планете.
№31. С 1930 по 2006 год Плутон считался планетой, но с 2006 года он был реклассифицирован как карликовая планета. Теперь люди снова хотят, чтобы он был классифицирован, как планета.
№32. Вселенная была очень горячей, пока была молодой. В настоящее время доказано, что по мере расширения Вселенной она охлаждается и может в конечном итоге привести к так называемой Большой Заморозке. Эта большая заморозка также называется «жаркой смертью».
В глубоком пространстве можно отыскать настоящую драгоценность, представленную планетарной туманностью IC 418 (Спирограф).
№33. Измерения, сделанные с помощью WMAP, т. е. микроволнового анизотропного зонда Уилкинсона, посвященного современной плотности и геометрии Вселенной, поддерживают теорию Большой Заморозки.
№34. Диаметр нашей Вселенной составляет ошеломляющие 150 миллиардов световых лет. Разве мы не говорили, что эта статья о Вселенских фактах поразит вас?
№35. Поскольку Вселенная расширяется – у нее нет центра. Многие когда-то думали, что Земля была центром Вселенной. Но нет.
№36. Знаете ли вы, что Луна удаляется от Земли? Луна удаляется примерно на 3,8 сантиметра от Земли каждый год.
№37. Мы дали вам общее количество звезд, присутствующих во вселенной. И удивительно то, что каждый день рождаются новые 275 миллионов звезд!
№38. Путь фотона от ядра Солнца к поверхности Солнца длится 170 000 лет.
№39. У центр нашей галактики вкус малины и запах рома. Как мы узнали? Конечно, изучая пыль из центра нашей галактики.
№41. Земля находится на расстоянии 149,67 миллионов километров от Солнца. Земле потребуется 177 лет, чтобы достичь Солнца, если ее постоянная скорость будет 60 километров в час.
№42. Люди установили на Луне зеркала, которые помогают нам рассчитать точное расстояние Луны от Земли.
Космический телескоп Хаббл предоставил новое качественное фото удивительной туманности Кошачий Глаз. Здесь она действительно выглядит как пугающее око бесплотного колдуна Саурона из «Властелина колец».
№43. Наша галактика, Млечный Путь, вращается со скоростью 250 километров в секунду, и время, необходимое для завершения одного оборота, составляет 200 миллионов лет.
№44. Знаете ли вы, что в созвездии Орла находится газовое облако, в котором содержится огромное количество алкоголя? Мы можем сделать 400 триллионов пинт пива в этом газовом облаке. Похоже, это место, где мы должны жить!
№45. Если бы звезды в любой галактике были сжаты до размера теннисного мяча, то они были бы на расстоянии 4800 километров друг от друга (в среднем).
№46. Астрономы и ученые считают, что во Вселенной около 2 триллионов галактик.
№47. У большинства галактик черные дыры в центре, и масса таких черных дыр составляет 1/1000 массы материнской галактики.
№48. Первая черная дыра, которую мы сфотографировали, находится на расстоянии 500 миллионов триллионов километров от Земли. По оценкам, она в 3 миллиона раз больше Земли.
№49. Большое Красное Пятно на Юпитере сжимается. Раньше туда могло втиснуться три Земли, но теперь он может вместить только одну.
№50. Знаете ли вы, что Плутон меньше, чем Соединенные Штаты? Диаметр экватора Плутона равен расстоянию от Лондона до Денвера.
№51. Астрономы нашли гигантское облако водяного пара во Вселенной. Оно находится на расстоянии 10 миллиардов световых лет от Земли. Облако в 140 триллионов раз превышает массу воды, присутствующей в океанах Земли.
№52. Вот один из забавных фактов – скафандр NASA стоит 12 000 000 долларов. Модуль рюкзака и управления составляет 70% от общей стоимости.
№53. Астрономы обнаружили самый большой алмаз в нашей галактике. Алмаз называется BPM 37093. Это переменная звезда белого карлика, и у нее есть имя – Люси в честь известной песни Битлз «Люси в Небе с Алмазами». Ее диаметр около 40 000 километров, а вес составляет 10 миллиардов триллионов триллионов каратов.
Перед вами фото красивой туманности Яйцо (CRL2688) из космоса. Находится на удаленности в 3000 световых лет.
№54. Солнцу требуется около 225 миллионов лет, чтобы совершить оборот вокруг галактики Млечный путь.
№55. Уран вращается на боку, т.е. она одном полюсе в течение 42 земных лет длится лето, а на другом зима.
№57. Вояджер-1 запечатлел самую дальнюю фотографию нашей планеты на расстоянии около 6 миллиардов километров от Земли.
№58. Только в нашей галактике 500 миллионов планет имеют потенциал или способность поддерживать жизнь! Эти планеты находятся в так называемой зоне Златовласки.
№60. Когда Вселенной было всего 10-43 секунды, она была меньше атома и составляла всего миллион миллиардов миллиардных размера атома.
Мы завершаем эту статью и позволим вам переварить некоторые из этих невероятных фактов.
Звезды и планеты
Чем планета отличается от звезды? Все дело в размере, составе небесных тел или же их поведении и влиянии на окружающее космическое пространство? И какой космический объект можно назвать звездой? Давайте узнаем это на примере Солнца, Земли и Солнечной системы.
В пределах Солнечной системы проживает только одна звезда – Солнце (74% водорода и 24% гелия). Показатели ее массы, давления и температурные отметки позволяют активировать процесс плавления, в котором атомы водорода трансформируются в гелий. В этот момент вырабатывается огромный энергетический всплеск. Если объект не выполняет подобных действий, то звездой не считается. Нижний рисунок показывает, что размер в космическом масштабе имеет знание. Проследите за сравнением размеров планет Солнечной системы, включая Землю, с Солнцем и более крупными звездами, вроде Сириуса, Арктура, Альдебарана, Ригель и Бетельгейзе.
Сравнение размеров планет и некоторых звезд
Большая часть планет по своему составу очень похожа на Солнце. Например, у Юпитера и Сатурна приблизительные водородно-гелиевые смеси. Но если это так, тогда почему они не вырабатывают звездный свет и вынуждены вращаться вокруг звезды? Все дело в массе. Юпитеру нужно быть в 80 раз массивнее, чтобы запустить процесс плавления.
Планеты вроде Земли совсем крошечные и представлены элементами с большой плотностью (железом, кремнием и кислородом). Газовые гиганты также могут похвастаться подобными составляющими, только в больших размерах. Например, в ядре Юпитера есть скалистый шар в 14-18 раз крупнее нашей планеты.
А что с орбитами планет и звезд? Тут все просто, пока не сталкиваешься с вариантами двойных или даже многократных звезд, где существует общий центр тяжести. Более того, планеты также бывают двойными и вращаются вокруг друг друга, а затем совершают обороты вокруг звезды.
Звезды
История наблюдений за звездами
Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше Солнце, а значит подчиняются тем же физическим законам.
Фотография умирающей звезды. Изображение получено космическим телескопом Хаббл
Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).
Наименование звезд Вселенной
Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.
В современном мире насчитывается 88 созвездий (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона Бетельгейзе (Альфа Ориона) – «рука (подмышка) великана».
Красный сверхгигант Бетельгейзе
Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.
Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.
Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.
Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.
Типы звезд Вселенной
Это то, что мы видим до появления полноценной звезды. Протозвезда представляет собою скопление газа, рухнувшего от молекулярного облака. Эволюционная фаза занимает примерно 100000 лет. Дальше гравитация набирает силу, и заставляет образование разрушаться. Гравитация накаляет газ и вынуждает его выделять энергию.
Звезды типа Т Тельца |
Этот момент идет перед переходом в звезду главной последовательности. Наступает в завершении протозвезды, когда энергию дарит только разрушающая ее гравитационная сила. У таких звезд еще нет достаточного нагрева и давления, чтобы активировать процесс ядерного синтеза. На звездах типа Т Тельца можно заметить огромные пятна, вспышки рентгеновского излучения и мощные порывы ветров. Эта стадия охватывает 100000 миллионов лет.
Звезды Главной последовательности |
Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск.
Когда звезда полностью израсходует внутреннее топливо, то больше не может создавать внешнее давление, а значит не противодействует внутреннему. Звезда сжимается, а оболочка вокруг ядра воспламеняется, продлевая ей жизнь, но увеличивая в размере. Звезда трансформируется в красного гиганта и может быть в 100 раз крупнее, чем представитель в главной последовательности. Когда не остается водорода, начинает гореть гелий и даже более тяжелые элементы. На этот этап уходит несколько сотен миллионов лет.
Красный карлик |
Это наиболее распространенный вид. Перед нами звезда главной последовательности с низкой массой, из-за чего значительно уступает в температуре Солнцу. Но выигрывает за счет продолжительности жизни. Дело в том, что им удается расходовать топливо в медленных темпах, поэтому отличаются значительной экономией. Наблюдения говорят, что такие объекты способны просуществовать до 10 триллионов лет. Наименьшие экземпляры достигают всего 0.075 раз солнечной массы, но могут набирать и 50%.
Когда звезда в 1.35-2.1 раз больше солнечной массы, то не завершает существование в виде белого карлика, а освещает небо взрывом сверхновой. После этого остается ядро, которое и выступает нейтронной звездой. Это очень интересный объект, так как всецело представлен нейтронами. Дело в том, что мощная гравитационная сила сжимает протоны и электроны, формирующие нейтроны. Если масса звезды была еще больше, то перед нами развернется черная дыра.
Сверхгигант |
Наиболее крупные звезды называют сверхгигантами. Они в десятки раз больше солнечной массы, но им не так уж и повезло: чем больше размер, тем короче жизнь. Они стремительно расходуют внутреннее топливо (несколько миллионов лет). Поэтому проживают короткую жизнь и умирают как сверхновые.
Как вы поняли, существуют различные виды звезд. Понимание этого, поможет вам разобраться в эволюционной стадии объекта и даже понять, что его ждет.
Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве.
Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность.
Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.
Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом.
Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу.
Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические.
Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь).
Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.
Формирование звезды
Звездная эволюция
Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.
Этапы эволюции звезды
Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.
Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино. Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.
Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.
Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.
Двойные звезды
Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в Млечной Пути многократные.
Двойная звезда в Большой Медведице
Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.
Характеристика звезд
Список самых ярких звезд видимых с Земли
№ | Название | Расстояние, св. лет | Видимая величина | Абсолютная величина | Спектральный класс | Небесное полушарие |
---|---|---|---|---|---|---|
0 | Солнце | 0,0000158 | −26,72 | 4,8 | G2V | |
1 | Сириус (α Большого Пса) | 8,6 | −1,46 | 1,4 | A1Vm | Южное |
2 | Канопус (α Киля) | 310 | −0,72 | −5,53 | A9II | Южное |
3 | Толиман (α Центавра) | 4,3 | −0,27 | 4,06 | G2V+K1V | Южное |
4 | Арктур (α Волопаса) | 34 | −0,04 | −0,3 | K1.5IIIp | Северное |
5 | Вега (α Лиры) | 25 | 0,03 (перем) | 0,6 | A0Va | Северное |
6 | Капелла (α Возничего) | 41 | 0,08 | −0,5 | G6III + G2III | Северное |
7 | Ригель (β Ориона) | 0,12 (перем) | −7 [3] | B8Iae | Южное | |
8 | Процион (α Малого Пса) | 11,4 | 0,38 | 2,6 | F5IV-V | Северное |
9 | Ахернар (α Эридана) | 69 | 0,46 | −1,3 | B3Vnp | Южное |
10 | Бетельгейзе (α Ориона) | 0,50 (перем) | −5,14 | M2Iab | Северное | |
11 | Хадар (β Центавра) | 0,61 (перем) | −4,4 | B1III | Южное | |
12 | Альтаир (α Орла) | 16 | 0,77 | 2,3 | A7Vn | Северное |
13 | Акрукс (α Южного Креста) | 0,79 | −4,6 | B0.5Iv + B1Vn | Южное | |
14 | Альдебаран (α Тельца) | 60 | 0,85 (перем) | −0,3 | K5III | Северное |
15 | Антарес (α Скорпиона) | 0,96 (перем) | −5,2 | M1.5Iab | Южное | |
16 | Спика (α Девы) | 250 | 0,98 (перем) | −3,2 | B1V | Южное |
17 | Поллукс (β Близнецов) | 40 | 1,14 | 0,7 | K0IIIb | Северное |
18 | Фомальгаут (α Южной Рыбы) | 22 | 1,16 | 2,0 | A3Va | Южное |
19 | Бекрукс, Мимоза (β Южного Креста) | 1,25 (перем) | −4,7 | B0.5III | Южное | |
20 | Денеб (α Лебедя) | 1,25 | −7,2 | A2Ia | Северное | |
21 | Регул (α Льва) | 69 | 1,35 | −0,3 | B7Vn | Северное |
22 | Адара (ε Большого Пса) | 1,50 | −4,8 | B2II | Южное | |
23 | Кастор (α Близнецов) | 49 | 1,57 | 0,5 | A1V + A2V | Северное |
24 | Гакрукс (γ Южного Креста) | 120 | 1,63 (перем) | −1,2 | M3.5III | Южное |
25 | Шаула (λ Скорпиона) | 330 | 1,63 (перем) | −3,5 | B1.5IV | Южное |
Другие известные звезды:
Вы могли заметить, что звезды отличаются по цвету, который, на самом деле, зависит от поверхностной температуры.
Класс | Температура,K | Истинный цвет | Видимый цвет | Основные признаки |
---|---|---|---|---|
O | 30 000—60 000 | голубой | голубой | Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N. |
B | 10 000—30 000 | бело-голубой | бело-голубой и белый | Линии поглощения гелия и водорода. Слабые линии H и К Ca II. |
A | 7500—10 000 | белый | белый | Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов |
F | 6000—7500 | жёлто-белый | белый | Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti. |
G | 5000—6000 | жёлтый | жёлтый | Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN. |
K | 3500—5000 | оранжевый | желтовато-оранжевый | Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO. |
M | 2000—3500 | красный | оранжево-красный | Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов. |
Каждая звезда обладает одним цветом, но производит широкий спектр, включая все виды излучения. Разнообразные элементы и соединения поглощают и выбрасывают цвета или длины волн цвета. Изучая звездный спектр, можно разобраться в составе.
Размер звездных космических объектов определяется в сравнении с солнечным радиусом. У Альфа Центавра А – 1.05 солнечных радиусов. Размеры могут быть разными. Например, нейтронные звезды в ширину простираются на 20 км, а вот сверхгиганты – в 1000 раз больше солнечного диаметра. Размер влияет на звездную яркость (светимость пропорциональна квадрату радиуса). На нижних рисунках можно рассмотреть сравнение размеров звезд Вселенной, включая сопоставление с параметрами планет Солнечной системы.
Сравнительные размеры звезд
Здесь также все вычисляется в сравнении с солнечными параметрами. Масса Альфа Центавра А – 1.08 солнечных. Звезды с одинаковыми массами могут не сходиться по размерам. Масса звезды влияет на температуру.
Звезды генерируют магнитные поля. В случае с Солнцем, исследователи выяснили, что его магнитное поле способно достичь очень сконцентрированного состояния в небольших участках, создавая солнечные пятна или же извержения – выбросы корональной массы. Магнитное поле зависит от скорости вращения (увеличивается с нарастанием и уменьшается с замедлением).
Классификация звезд
В типах звезд главную роль играет спектр в системе Моргана-Кинана, выделяющей 8 спектральных классов. Каждый из них соответствует диапазону поверхностных температур: O, B, A, F, G, K, M и L (от наиболее горячего к холодному). Каждый из них делится еще на 10 типов (от 0 до 9).
Эта система учитывает и светимость. Наиболее крупные и ярчайшие обладают наименьшими римскими цифрами: Ia – яркий сверхгигант, Ib – сверхгигант, II – яркий гигант, III – гигант; IV – субгигант и V – главная последовательность или карлик.
Структура звезд Вселенной
Далее в звездном строении идет фотосфера, которую часто называют поверхностью. За ней – красноватая хромосфера, из-за наличия водорода. Внешний шар звезды – корона. Она невероятно горячая и может быть связана с конвекцией во внешних слоях. Нижнее видео детально описывает движение звезд на небе.