Что можно увидеть в школьный микроскоп
Что можно увидеть в микроскоп?
Микроскоп – не только прибор профессионального назначения, но и способ привлечения к науке детей и подростков. Из этой статье вы сможете узнать, что все таки можно увидеть в микроскоп.Все бактерии были открыты с помощью микроскопа, но далеко не все знают что увидеть их не так просто. Даже самые большие бактерии под названием селеномонады, обитающие во рту человека и животных, которые открыл Антони Вам Левенгук потребовали от него создания микроскопа в 500 крат. С помощью которого он и сделал свое открытие. В этой статье вы увидете наглядные примеры исследуемых объектов, которые можно рассмотреть в микроскоп.
Как выглядят объекты с увеличением 100 крат?
Матрица — это прямоугольная микросхема, состоящая из светочувствительных элементов — пикселей. В каждом пикселе содержится три субпикселя. Один субпиксель пропускает волны только определённой длины: для красного, зелёного или синего цвета (red, green, blue). Такая цветовая модель называется RGB.
Пиксели на телефоне. Увеличение 100 крат.
Плата — пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы.
Плата. Увеличение 150 крат.
Белок куриного яйца. Увеличение 200 крат.
Примеры объектов при увеличении 400 крат?
Песок-рыхлая осадочная горная порода, а также искусственный материал, состоящий из зёрен горных пород. Очень часто состоит из почти чистого минерала кварца (вещество — диоксид кремния).
Песок. Увеличение 400 крат.
Вошерия- нитчатая желто-зеленая водоросль, широко распространенная у нас в текучих и стоячих водах или же на почве — по берегу водоемов, в иле.
Вошерия. Увеличение 400 крат.
Древесина сосны. Увеличение 400 крат.
Корень свеклы- овощная, техническая и кормовая культура с мировым именем – представляет собой также низкокалорийный продукт, выделяющийся среди остальных овощных растений высоким уровнем содержащихся в ней сахаров и относительно высоким уровнем – углеводов.
Корень свеклы. Увеличение 400 крат.
Крапива- род цветковых растений семейства Крапивные (Urticaceae). Стебли и листья покрыты жгучими волосками, которым дали латинское название: uro «жгу». Род включает в себя более 50 видов.
Крапива. Увеличение 400 крат.
Хара- внешне водоросли представляют собой массивные ветвящиеся растения, имеющие немало отличий от остальных представителей царства. Если подходить поверхностно к анализу строения представителей этой группы, то вполне можно спутать их с высшими классами растительности.
Хара. Увеличение 400 крат.
Стебель кукурузы. Увеличение 400 крат.
Стебель льна. Увеличение 400 крат.
Стебель мха. Увеличение 400 крат.
Лист камелии. Увеличение 400 крат.
Стебель клевера. Увеличение 400 крат.
Примеры микроскопов с увеличением 400 крат
Исследуемые объекты при увеличении 640-800 крат?
Стебель хлопка. Увеличение 640 крат.
Кристаллы соли. Увеличение 640 крат.
Корневище ландыша – поперечный срез. Увеличение 640 крат.
Белая плесень или гриб мукор вызывает процессы гниения конструкций и пищевых продуктов.
Плесень мукор. Увеличение 640 крат.
Дрожжевые клетки. Увеличение 800 крат.
Примеры микроскопов с увеличением 640-800 крат
Объекты при увеличении 900,1200 и 2000 крат?
Пыльца лилии. Увеличение 900 крат
Микроскопическая водоросль диатома. Увеличение 900 крат
Фитопланктон. Увеличение 900 крат
Спорообразующая бактерия выращенная. Уведичение 1200 крат.
Примеры микроскопов с увеличением 900, 1200 и 2000 крат
Подробное видео что можно увидеть
Что можно увидеть в микроскоп?
Микроскоп — удивительное изобретение, благодаря которому стало возможным исследование клеток, полезных и вредных микроорганизмов, а также структуры различных предметов. Если бы не было микроскопов, люди бы не смогли изучить строение и «повадки» вирусов и бактерий, представляющих реальную опасность для жизни и здоровья. Школьники на уроках биологии используют учебные световые микроскопы, рассматривая микропрепараты в условиях проходящего света. Есть и другие виды этих оптических приборов: например, стереоскопические, возможности которых заслуживают отдельного внимания.
Какой учёный впервые увидел клетку с помощью микроскопа?
Традиционно исследования микромира в популярной литературе связывают с именем голландского учёного Антония ван Левенгука (1632-1723). Однако клетку впервые рассмотрел другой естествоиспытатель, которого справедливо считают одним из изобретателей микроскопа — англичанин Роберт Гук.
Он собрал настоящий микроскоп, пригодный для серьёзных исследований, и именно это событие стало стимулом для открытия клеточной структуры всех живых организмов — в том числе, и человеческого.
Что можно увидеть в школьный микроскоп?
В школьный микроскоп можно увидеть большинство клеточных элементов, если научиться правильно работать с механизмами увеличения. Обычно, речь идёт об инструменте, имеющем нижнюю подсветку. Препарат кладут на предметный столик, фиксируют его зажимами, затем включают нижнее освещение либо направляют на препарат зеркальце.
Если вы используете 40-кратное увеличение, клетка будет выглядеть разделённой на ячейки в форме маленьких мешочков. При 100-кратном увеличении можно увидеть поры клетки, ядро и ядрышко. Увеличение от 400 крат и выше в школьных микроскопах применяют для ознакомления, поскольку они не предназначены для глубоких исследований. Если увеличить изображение на школьном приборе до этих цифр, оно будет не таким контрастным и ярким.
Для изучения микромира вы можете пользоваться набором микропрепаратов, который входит в комплект той или иной модели микроскопа. Если объектов для наблюдения окажется мало, всегда есть возможность докупить микропрепараты дополнительно, так как в ассортименте нашего магазина представлен богатый выбор наборов с чистыми (запасными) предметными стёклами.
Дома можно найти массу интересных объектов для исследования, начиная от шерсти домашних животных и заканчивая пылью, которую можно легко собрать с помощью ватной палочки, аккуратно нанести на предметное стекло и положить под объектив микроскопа. Главное-сам факт эксперимента, который всегда будет для вас неожиданным и увлекательным.
Если подключить к школьному микроскопу цифровую видеокамеру (или видеоокуляр), изображение можно будет вывести на экран персонального компьютера и проводить групповые наблюдения. Это очень удобно, потому что нет необходимости выстраиваться в очередь и ждать, пока один человек рассмотрит изображение. Для получения такой возможности необходимо загрузить на компьютер специальную программу, позволяющую не только наблюдать за объектом, но снимать фотографии и видеоролики.
А что видно в стереоскопический микроскоп?
В отличие от школьных световых микроскопов, более привычных человеческому взору, стереоскопические микроскопы являются бинокулярными. У них два объектива, поэтому разглядывать объекты через них бывает гораздо удобнее. К тому же, и изображение предмета, получаемого бинокулярным путём, выглядит особенно чётким, контрастным и трёхмерным. Увеличение у таких инструментов колеблется от 20 до 100 крат. С их помощью вы также можете рассматривать микропрепараты и разные микроорганизмы (инфузорий, дафний, артемий и т.д.). Также стереоскопические микроскопы предназначены для таких исследований:
Если, например, вы будете рассматривать монетку в стереомикроскоп, то уведите в подробностях её рельеф и мельчайшие царапины.
Если вы хотите рассмотреть под стереомикроскопом структуру камня, нужно отколоть от него небольшой кусочек и для удобства положить на чашку Петри. Расстояние между объективом и предметным столиком прибора вполне позволяет изучать препараты именно таким способом. В этом заключаетя существенное отличие стереомикроскопов от классических (бинокулярных) световых моделей.
Что можно увидеть в микроскоп?
Микроскоп – не только прибор профессионального назначения, но и способ привлечения к науке детей и подростков. Из этой статье вы сможете узнать, что все таки можно увидеть в микроскоп.Все бактерии были открыты с помощью микроскопа, но далеко не все знают что увидеть их не так просто. Даже самые большие бактерии под названием селеномонады, обитающие во рту человека и животных, которые открыл Антони Вам Левенгук потребовали от него создания микроскопа в 500 крат. С помощью которого он и сделал свое открытие. В этой статье вы увидете наглядные примеры исследуемых объектов, которые можно рассмотреть в микроскоп.
Как выглядят объекты с увеличением 100 крат?
Матрица — это прямоугольная микросхема, состоящая из светочувствительных элементов — пикселей. В каждом пикселе содержится три субпикселя. Один субпиксель пропускает волны только определённой длины: для красного, зелёного или синего цвета (red, green, blue). Такая цветовая модель называется RGB.
Пиксели на телефоне. Увеличение 100 крат.
Плата — пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы.
Плата. Увеличение 150 крат.
Белок куриного яйца. Увеличение 200 крат.
Примеры объектов при увеличении 400 крат?
Песок-рыхлая осадочная горная порода, а также искусственный материал, состоящий из зёрен горных пород. Очень часто состоит из почти чистого минерала кварца (вещество — диоксид кремния).
Песок. Увеличение 400 крат.
Вошерия- нитчатая желто-зеленая водоросль, широко распространенная у нас в текучих и стоячих водах или же на почве — по берегу водоемов, в иле.
Вошерия. Увеличение 400 крат.
Древесина сосны. Увеличение 400 крат.
Корень свеклы- овощная, техническая и кормовая культура с мировым именем – представляет собой также низкокалорийный продукт, выделяющийся среди остальных овощных растений высоким уровнем содержащихся в ней сахаров и относительно высоким уровнем – углеводов.
Корень свеклы. Увеличение 400 крат.
Крапива- род цветковых растений семейства Крапивные (Urticaceae). Стебли и листья покрыты жгучими волосками, которым дали латинское название: uro «жгу». Род включает в себя более 50 видов.
Крапива. Увеличение 400 крат.
Хара- внешне водоросли представляют собой массивные ветвящиеся растения, имеющие немало отличий от остальных представителей царства. Если подходить поверхностно к анализу строения представителей этой группы, то вполне можно спутать их с высшими классами растительности.
Хара. Увеличение 400 крат.
Стебель кукурузы. Увеличение 400 крат.
Стебель льна. Увеличение 400 крат.
Стебель мха. Увеличение 400 крат.
Лист камелии. Увеличение 400 крат.
Стебель клевера. Увеличение 400 крат.
Примеры микроскопов с увеличением 400 крат
Исследуемые объекты при увеличении 640-800 крат?
Стебель хлопка. Увеличение 640 крат.
Кристаллы соли. Увеличение 640 крат.
Корневище ландыша – поперечный срез. Увеличение 640 крат.
Белая плесень или гриб мукор вызывает процессы гниения конструкций и пищевых продуктов.
Плесень мукор. Увеличение 640 крат.
Дрожжевые клетки. Увеличение 800 крат.
Примеры микроскопов с увеличением 640-800 крат
Объекты при увеличении 900,1200 и 2000 крат?
Пыльца лилии. Увеличение 900 крат
Микроскопическая водоросль диатома. Увеличение 900 крат
Фитопланктон. Увеличение 900 крат
Спорообразующая бактерия выращенная. Уведичение 1200 крат.
Примеры микроскопов с увеличением 900, 1200 и 2000 крат
Подробное видео что можно увидеть
Детский микроскоп: 10 объектов для исследования
Микроскоп — это прибор не для развлечения, а для познания. Правда, оно бывает настолько увлекательным, что аппарат заменяет многие игры и забавы! Неудивительно, что и взрослые готовы рассматривать под увеличением все то, что интересно детям.
Для первых опытов рекомендуется приобрести недорогой монокулярный микроскоп. Как правило, в комплекте идут дополнительные объективы. Вместе с окуляром аппарат может давать 800-кратное увеличение!
Совсем необязательно покупать или одалживать у знакомых биологов электронный, сканирующий или рентгеновский микроскоп: они предназначены для научного использования в лабораториях. Человек, работающий с ними, должен иметь специальный опыт. Но пока опыта нет, можно исследовать все, что есть под рукой и даже на руках, а обширный список мы как раз подготовили!
1 Мякоть или кожура фрукта или овоща, кусочки грибов, мох
Можно здорово удивиться, что яблоко меняет свой цвет: в зависимости от освещения фрукт становится черным или голубым, а кожура томата отличается бронзовым оттенком. А как красивы увеличенные листы салата или лесные мхи!
2 Волосы
Казалось бы, одинаковые на первый взгляд человеческие волосы под микроскопом имеют разную толщину, структуру и цвет. Можно сравнить волосы людей и домашнего животного — кошки или собаки, поместив их под стекло микроскопа.
3 Листья и лепестки растений
Микроскоп легко ответит на вопрос ребенка: «Почему крапива жжется?». Все дело в том, что на листе растения есть жгучие волоски, отлично заметные при увеличении!
А любители красоты не устоят перед увеличенными лепестками садовых или полевых цветков — анютиных глазок, васильков, красных роз.
4 Пыльца
«Неужели эти фигурки действительно существуют?» — может спросить юный биолог. Действительно, крошечные частички под стеклом — это разноцветные тела различных форм: одни напоминают круг, другие — многоугольники с шипами. А для того чтобы перенести пыльцу с растения на предметное стеклышко, понадобится мягкая кисточка.
5 Бумага, мех, нитки
Все это под увеличением изменяется причудливым образом: например, кусочек бумажного листа будет выглядеть как серая структура. И мех, и нитки под микроскопом совсем не похожи на то, что мы привыкли видеть невооруженным глазом!
6 Кристаллы поваренной соли, сахар-песок, зернышко кофе
Наверное, интереснее всего выглядят кубики соли — как будто ими можно играть! Да и гранулы сахарного песка поражают своими четкими геометрическими формами.
7 Соскоб налета со стенки аквариума
Этот опыт разъясняет строение зеленых водорослей. Специалисты отмечают, что такое наблюдение может заставить ребят подолгу находиться у микроскопа!
8 Бактерии в зубном налете
Зачем чистить зубы два раза в день? А для того, чтобы во рту было как можно меньше всех этих «палочек», «ниточек», «шариков», которыми изобилует зубной налет. Правда, чтобы увидеть бактерии, налет разводят в капельке воды, предварительно сняв острой зубочисткой или спичкой. Также можно изучить выпавшие молочные зубы, которые хранятся во многих семьях.
9 Грязь под ногтями
А это исследование — просто спасение для тех родителей, которые «воюют» со своими чадами за регулярное мытье рук. Мама и папам, уставшим объяснять, зачем это нужно делать, прекрасно поможет микроскоп.
Воочию увидев, что же скапливается под ногтями, дети незамедлительно побегут в ванную!
10 Муха или другое насекомое
Строение насекомого можно и нужно изучать под микроскопом: конечно, эстетического удовольствия не получишь, зато обретешь новые полезные знания.
Каким бы любознательным ни был ребенок, первое время работать с микроскопом нужно с родителями. Мама и папа должны предупредить, что нельзя баловаться со стеклом, крутить и вертеть винты без необходимости. Также родители могут рассказать об устройстве микроскопа и предназначении каждой детали. Все это «отложится в копилку» сына или дочери и заставит тянуться к новым знаниям.