Что можно увидеть через электронный микроскоп

Органоиды, обнаруженные с помощью электронного микроскопа

Что можно увидеть через электронный микроскопОрганоиды, или органеллы, – это специальные структуры клетки, которые выполняют жизненно важные для нее функции. Эти структуры подобны органам в человеческом организме, отсюда и взялось их название. Органоидов достаточно много, поэтому перечислим лишь некоторые из них: цитоплазма, митохондрии, аппарат Гольджи, лизосомы, вакуоли.

В данной статье мы рассмотрим органоиды, обнаруженные с помощью электронного микроскопа. У самого мощного светового микроскопа разрешающая способность объектива составляет примерно 200 нм. При этом сила разрешения определяется минимальным размером частицы, которую можно разглядеть в микроскоп. Именно поэтому до изобретения электронного микроскопа ряд клеточных органоидов оставался скрытым от глаз исследователей.

Какие органоиды можно увидеть в световой микроскоп? Только самые крупные, если можно так охарактеризовать мельчайшие частицы. Можно разглядеть пластиды и ядро клетки. С появлением электронного микроскопа представления ученых о клетке и ее органоидах существенно изменились, ведь его разрешающая способность достигает значения в 0,1 нм.

Какие органоиды обнаружены с помощью электронного микроскопа

Как выяснилось, у клетки есть и другие немаловажные элементы. В частности, это такие органеллы (постоянные компоненты клетки), как митохондрии и рибосомы, а также части структуры цитоплазмы (аппарат Гольджи, эндоплазматическая сеть). Самыми маленькими из обнаруженных электронным микроскопом органелл клетки считаются рибосомы.

Исследования клеточной структуры, проведенные с использованием электронного микроскопа, наглядно продемонстрировали, что клетку можно считать сложной системой, состоящей из отдельных органоидов, которые невидимы в световой микроскоп.

4glaza.ru
Февраль 2018

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Источник

Электронный микроскоп

Д. Д. Галанин («Наука и жизнь» №2, 1934 год)
«Наука и жизнь» №10, 2009

Современная наука имеет глубокие корни. Гораздо более глубокие, чем может показаться на первый взгляд. Журнал «Наука и жизнь», основанный в 1890 году и возобновлённый после перерыва в октябре 1934 года, помогает проследить историю развития научно-технической мысли.

Что можно увидеть через электронный микроскоп

Волны и частицы

Как были открыты электроны

Что можно увидеть через электронный микроскоп

Представление об электронах как отдельных частичках, могущих в пустоте двигаться с большими скоростями, было создано английскими учёными В. Круксом и Дж. Дж. Томсоном в связи с рядом опытов по прохождению электричества через крайне разреженные газы.

Крукс помещал металлическую пластинку внутри стеклянной трубки, из которой выкачивался газ, и заряжал её до большого напряжения отрицательным электричеством. Если напряжение было достаточно велико, из пластинки во все стороны перпендикулярно к её поверхности начинали исходить какие-то лучи, невидимые глазу, но заставляющие стекло трубки светиться зелёным светом. Обнаружить эти лучи было очень легко, ставя между пластинкой и стеклом какой-нибудь предмет, так как на стекле получалась тень, форма которой ясно указывала, что из пластинки по прямым линиям исходят какие-то лучи, заставляющие стекло светиться (рис. 1).

Чтобы исследовать природу этих лучей, был придуман целый ряд необычайно остроумных опытов, и удалось с полной несомненностью доказать, что эти лучи представляют собой летящие с огромной скоростью частицы электричества, названные электронами.

Как можно управлять движением электронов

На рис. 2 схематично изображена стеклянная трубка, из которой выкачан воздух, снабжённая несколькими электродами, к которым можно подводить электрическое напряжение.

Что можно увидеть через электронный микроскоп

Электрод К (катод) заряжен отрицательно по отношению к пластинке А (анод) настолько сильно, что из него будут вылетать электроны. Обычно катод нагревают до высокой температуры, тогда напряжение между катодом и анодом может быть значительно меньше.

Электроны полетят от электрода к пластинке, и их скорость будет всё время возрастать; если в аноде сделано отверстие, то разогнавшиеся электроны, пролетая через отверстие, будут продолжать лететь с достигнутой скоростью по инерции прямолинейным пучком.

Если вдоль пучка расположить пластинку, покрытую веществом, светящимся от ударов электронов, то этот пучок делается видным в виде узкой светящейся полоски, указывающей путь электронов.

Статья об электронном микроскопе, написанная блестящим популяризатором науки, физиком и педагогом Дмитрием Дмитриевичем Галаниным, была опубликована в «Науке и жизни» 75 лет назад. Автор статьи не ошибся в своих предсказаниях: сейчас электронный микроскоп — вполне обычный научный прибор в арсенале физиков, химиков, биологов, благодаря которому можно увидеть отдельные молекулы и даже атомы. Более того, электронный микроскоп стал важнейшим инструментом нанотехнологий.

Вспомним некоторые важные научные вехи в развитии электронной микроскопии.

Поставим сверху и снизу от этого пучка летящих электронов две металлические пластинки и зарядим верхнюю пластинку (M) отрицательно, а нижнюю (N) положительно. Тогда электроны, отталкиваясь от верхней и притягиваясь к нижней, изогнут свой путь. Этот изгиб будет вполне похож на изгиб под влиянием силы тяжести струи воды, вытекающей из горизонтальной трубы. Величина изгиба будет зависеть от величины напряжения между пластинками M и N и от скорости электронов. Понятно, чем скорость будет больше, тем изгиб будет меньше и чем напряжение будет больше, тем больше будет и изгиб.

Что можно увидеть через электронный микроскоп

Придавая пластинкам соответствующую форму и меняя напряжение и скорость электронов, получают возможность управлять движением электронов. Надо только точно рассчитать, как эти пластинки будут влиять на полёт электронов. Это довольно трудная задача, но с ней легко может справиться хороший математик. То же отклонение пучка можно сделать при помощи магнитного поля.

Электронная линза

На рис. 3 изображён опыт с электронной линзой, из которого видно, как хорошо удаётся управлять потоком летящих электронов. Из ряда отверстий с левой стороны рисунка выходят несколько расходящихся пучков электронов, дальше они проходят через так называемую электронную линзу, состоящую из заряженных пластинок. Крайние пластинки линзы заряжены отрицательно, а средняя пластинка — положительно. Пучки электронов отклоняются линзой и пересекаются совершенно так же, как лучи света, проходящие через стеклянное оптическое стекло. На среднем рисунке напряжение сделано меньше, и пучки, отклоняясь, делаются параллельными, а на нижнем рисунке (без напряжения) остаются расходящимися.

На практике оказывается гораздо удобнее пользоваться не заряженными пластинками, а катушками, создающими магнитное поле. Влияние магнитных сил на полёт электрона несколько сложнее, но, по существу, ничем не отличается от влияния электрических сил, и при помощи магнитного поля соответственно подобранной катушки, по которой проходит электрический ток, можно также построить электронную линзу.

Электронный микроскоп

Получив возможность построить электронную линзу, нетрудно осуществить и сложный электронный микроскоп.

Что можно увидеть через электронный микроскоп

С внешней стороны электронный микроскоп изображён на рис. 4. Назначение отдельных частей указано на самом рисунке.

Результаты исследования при помощи электронного микроскопа

Что можно увидеть через электронный микроскоп

На рис. 5 представлен снимок, сделанный электронной линзой с нагретого, покрытого окисью катода, испускающего электроны. На снимке видно, что только отдельные части катода испускают электроны. Расположение этих пятен позволяет изучать структуру слоя окиси, что представляет очень большой интерес, так как такие окисные катоды применяются для катодных радиоламп.

На рис. 6 изображён тоновой снимок решётки из тонкой проволоки, причём расстояние между проволочками равно 0,3 мм. Слева — снимок при помощи электронного микроскопа, а справа — снимок при помощи светового микроскопа. Электронный снимок во всяком случае не хуже, чем световой.

Обычный световой микроскоп не может разделить двух точек или чёрточек, если расстояние между ними меньше четверти длины световой волны. Световые волны имеют заметные размеры, и поэтому «разрешающая способность» светового микроскопа достигает не более чем 0,4 μ (мкм, 10 –6 м. — Ред.), или 4000 Å (Å — ангстрем = 10 –8 см). Предел «разрешающей способности» электронного микроскопа ставится длиной волны того волнового процесса, который, согласно воззрениям современной физики, окружает летящий электрон, — длиной «волн материи» Де-Бройля.

Что можно увидеть через электронный микроскоп

Длина волны материи зависит от скорости летящего электрона и будет тем меньше, чем больше скорость электрона. Поэтому, увеличивая скорость электронов, можно сделать «разрешающую способность» электронного микроскопа почти безграничной. Можно подсчитать, по теории Де-Бройля, что при скорости электронов 750 вольт «разрешающая способность» электронного микроскопа уже достигает 22 ангстрем, а при легко достижимой скорости 75 000 вольт она делается около 2 ангстрем, то есть приближается к размерам атома.

Первые электронные микроскопы были построены всего 2–3 года назад (в начале 1930-х годов. — Ред.), но уже сейчас при их помощи можно получать снимки тонких листочков металла, прозрачных для электронов, с увеличением в 7–12 000 раз.

Электронный микроскоп, возможно, сделается скоро таким же обычным прибором, как световой микроскоп, и трудно сейчас представить, сколь интересные результаты могут быть получены при помощи этого прибора.

* См. статью акад. А. Ф. Иоффе в № 1, 1934 г. (перепечатана в журнале «Наука и жизнь» №10, 2004 год).

Источник

Что можно увидеть в оптический и цифровой микроскопы и как ими пользоваться

Что можно увидеть через электронный микроскоп

Что можно увидеть через электронный микроскоп

Содержание

Содержание

При проведении научных и любительских исследований невозможно обойтись без микроскопа. Он не только приблизит исследователя к новым открытиям, но и поможет рассмотреть удивительный мир, открывающийся в окружающих нас вещах. Что именно можно увидеть в микроскоп, как им пользоваться и какой лучше подойдет — в этом материале.

Что такое микроскоп

Прообраз первого микроскопа появился еще в 16 веке и с тех пор устройство прошло длинный путь своего становления и развития. Микроскопом называют прибор, предназначенный для увеличения мелких или практически не видимых человеческим глазом предметов и объектов. Процессы такого изучения называют микроскопией, которая подразделяется на категории в зависимости от вида микроскопа.

Что можно увидеть через электронный микроскоп

Где же можно использовать данное устройство:

На вопрос «Кто изобрел микроскоп?» до сих пор нет однозначного ответа, так как многие ученые и любители работали над похожими системами. Тем не менее часто выделяют Иоанна Липперсгея, Захария Янсена и, конечно же, Галилео Галилея.

Что можно увидеть через электронный микроскоп

Многие помнят или представляют микроскоп, как прибор с одним или двумя окулярами, которые при увеличении позволяют исследователю рассмотреть предмет в многократном увеличении. Это и есть классический прямой оптический микроскоп. Современная микроскопия использует множество типов приборов: электронные, инвертированные, лазерные, люминесцентные, стереоскопические и другие.

Так, например, люминесцентные подсвечивают изучаемый объект и позволяют изучать его как бы освещенным изнутри собственным светом за счет специальной лампы и системы светофильтров. А электронные, в отличие от оптических, используют вместо света пучки электронов. В общем для каждой отрасли науки и даже изучаемого объекта нужен определенный прибор. Мы же рассмотрим наиболее популярные и доступные рядовым пользователям модели.

Что можно увидеть через электронный микроскоп

Что можно увидеть через электронный микроскоп

Основные элементы микроскопа

И так, микроскопы отличаются друг от друга видами и целевым назначением. Соответственно, и устроены они по-разному. Существует две системы — оптическая и механическая. Первая включает в себя все элементы без которых микроскоп не будет микроскопом.

Что можно увидеть через электронный микроскоп

Окуляр

Глядя в глазной окуляр исследователь и будет изучать какой-либо объект. Окуляр дает некоторое фиксированное увеличение (10x, 20x, 25x и т.д.). Современные окуляры имеют несколько линз, встроенных в металлический корпус (тубус). В зависимости от количества окуляров микроскопы подразделяются на монокулярные, бинокулярные и тринокулярные. Бинокулярные создают стереокартинку, более удобны чем молекулярные, но в отличие от последних требуют привыкания и дополнительных настроек при использовании двух окуляров. Если используется цифровой микроскоп, то в нем окуляр как таковой отсутствует — его роль выполняет камера.

Объектив

Важнейшая и самая сложная часть прибора, позволяющая в купе с окуляром детально рассмотреть любой объект исследования. Чаще всего состоит из металлической трубки с несколькими линзами, дающими кратное увеличение. Объектив смотрит непосредственно на предмет изучения, точнее сказать — на предметный столик. Полученное с помощью объектива изображение мы и видим в окуляр.

В любительских и профессиональных устройствах может быть несколько объективов (не менее 3-х) встроенных в устройство или насадку револьверного типа. Пользователь просто проворачивает насадку и смотрит в нужный объектив. Чем больше объективов разной кратности, тем лучше для пользователя. Кратность указывается на корпусе объектива.

Что можно увидеть через электронный микроскоп

У каждого окуляра и объектива есть свое увеличение, которое вместе образует общее увеличение микроскопа. Чтобы высчитать его? нужно перемножить кратность увеличения окуляров и объективов. Так, например, если кратность окуляра составляет 10х, а объектива 40х, то общее увеличение будет составлять 400х. В некоторых приборах общее увеличение может составлять до 1200х. При таком увеличении можно рассматривать клетки растений и животных, строение насекомых, пыльцу растений и т.п.

Что можно увидеть через электронный микроскоп

Подсветка

При изучении объект, когда он расположен на подставке, необходимо подсвечивать снизу пучком света. Свет можно направить как простым зеркалом, так и более сложными устройствами, например, электроосветителями. Также подсветка может быть комбинированная для просмотра прозрачных и непрозрачных объектов. На нижних фотографиях указана комбинированная подсветка. На правом фото также виден небольшой винт регулировки подсветки.

Микроскопы используют при реставрациях образцов мировой культуры. Например, для восстановления терракотовой армии или полотен эпохи Возрождения.

А сейчас перейдем к механической системе микроскопа. Вот некоторые элементы, которые она включает в себя.

Подставка

Это основание микроскопа, отвечающее за его устойчивость. Если сюда прибавить еще и штатив, то вместе получится корпус микроскопа. На него крепятся все остальные части прибора. Чтобы фокусировать изображение, на корпусе обычно располагаются два винта, один из которых приближает или отдаляет объектив от объекта (грубая регулировка), а второй помогает произвести более тонкую фокусировку на предмете (тонкая регулировка).

Что можно увидеть через электронный микроскоп

Предметный столик

На него помещаются объекты для изучения. В центре столика есть небольшое круглое отверстие, через которое на предмет попадает пучок света. Снабжен зажимами. В некоторых моделях цифровых микроскопов, предметный столик отсутствует.

Что можно увидеть через электронный микроскоп

Дополнительные аксессуары

Помимо самого микроскопа потребуются и дополнительные инструменты, без которых работа будет невозможна или затруднительна. Главным здесь будет предметное стекло, на которое помещается предмет, подлежащий изучению. При необходимости он сверху накрывается покрывным стеклом. Также пригодятся скальпель, пипетка и пинцет. Пипетка будет полезна при наборе жидких образцов, пинцетом можно передвигать объекты изучения, а скальпелем отрезать небольшие частицы от предметов. Собирать и хранить какие-либо образцы желательно в специальных контейнерах, хотя можно обойтись и подручными средствами.

Что можно увидеть через электронный микроскоп

Принцип работы микроскопа

Кратко коснемся принца работы устройства и разберем его на примере оптического микроскопа. Для того, чтобы что-то рассмотреть в окуляры, нужна подсветка. В зависимости от вида прибора это может быть естественное или искусственное освещение, направление которого регулируется зеркалом. Кстати говоря, сейчас это уже устаревшая система. Все чаще используют свет, исходящий от встроенной в основание микроскопа лампы, которая питается от сети или батарейки. Подсветка лампы чаще всего регулируемая.

Поток света (естественного или от лампы) проходит через отверстие в предметном столике, пронизывает объект изучения насквозь и попадает на линзы объектива, а затем — окуляра, которые обеспечивают увеличение. Ну а далее в дело вступает опытный взгляд исследователя.

Что можно увидеть через электронный микроскоп

Как пользоваться оптическим микроскопом

Перед началом работы нужно подготовить рабочее место, очистить его от мусора и пыли. Желательно вымыть руки или использовать перчатки. Если есть пробелы в знаниях или сомнения, относящиеся к работе микроскопа, то обязательно нужно изучить инструкцию. В целом же работать с микроскопом не так сложно, как кажется на первый взгляд.

Изучаемый предмет помещается на предметный столик. Так можно изучать продукты питания, бумагу, насекомых, волосы и другие мелкие предметы. Несколько сложнее с жидкостью или в том случае, когда исследуемые объекты требуют предварительной подготовки. Например, тонкого среза или смеси в виде кашицы. На них нужно капнуть воды или специальной жидкости и сверху осторожно накрыть покровным стеклом. Также можно использовать готовые наборы микропрепаратов, в которые входит предметное стекло с уже нанесенным на него объектом исследования. Это может быть кошачья шерсть, голова мухи, срез дождевого червя, костная ткань, минералы и многое другое.

Далее нужно осуществить фокусировку. Винтом грубой регулировки следует приближать и отдалять предмет, пока не получится четкое изображение. После этого винтом (или колесиком) тонкой настройки добиваемся максимальной резкости картинки. Начинать фокусировать нужно с минимального значения, постепенно переключаясь на более высокое увеличение. Например, если прибор имеет два объектива значением 2х и 4х, то начинать фокусировку нужно с 2х, а затем, вращая револьверную насадку увеличивать значение.

Что можно увидеть через электронный микроскоп

Начав сразу же с максимального увеличения, пользователь рискует увидеть лишь малую часть объекта или же вообще ничего не увидеть. Если же прибор имеет только один объектив, то увеличение у него будет постоянным. Важно помнить, что винтом грубой фокусировки объектив приближается к предметному столику, поэтому есть большой риск сломать стекло, повредить сам объектив и даже получить порезы. Искать фокус следует не к стеклу, а от стекла. Стоит заметить, что на некоторых объективах, в первую очередь стократных, устанавливается специальная оправа, которая пружинит при встрече со стеклом. Однако, ее цель состоит не в защите линзы, а в создании более плотного контакта стекла с объективом.

Что можно увидеть через электронный микроскоп

Как пользоваться цифровым микроскопом

Цифровой микроскоп работает по-другому. У него отсутствует окуляр и сам он напоминает цифровую камеру, только с более многократным увеличением. Такие микроскопы можно встретить в нескольких вариантах, с различными характеристиками, назначением и соответственно ценами. Возьмем для примера стандартный настольный микроскоп, который больше относится к любительским. Подключив его через USB порт к компьютеру, пользователь также устанавливает специальное программное обеспечение, с помощью которого возможно рассмотреть изображение. После подключения, под объектив прибора размешается объект изучения, после чего исследователь сможет рассмотреть полученное изображение на мониторе компьютера. Считывается изображение посредством цифровой камеры.

Исследования через микроскоп — это не только полезно, но еще и увлекательно. Ученые используют профессиональные, мощные и дорогие устройства. Любителям же подойдут цифровые или бинокулярные оптические модели, с помощью которых можно изучать окружающий мир: насекомых, растения, продукты питания, камни, веточки деревьев и многое другое.

Источник

ЭЛЕКТРОННЫЙ МИКРОСКОП

ЭЛЕКТРОННЫЙ МИКРОСКОП, прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. ЭМ – один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела.

Существуют три основных вида ЭМ. В 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), в 1950-х годах – растровый (сканирующий) электронный микроскоп (РЭМ), а в 1980-х годах – растровый туннельный микроскоп (РТМ). Эти три вида микроскопов дополняют друг друга в исследованиях структур и материалов разных типов.

ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП

Электронная оптика.

Что можно увидеть через электронный микроскоп

Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Принцип действия магнитной линзы поясняется схемой (рис. 1). Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Поскольку оптическая сила такой линзы, т.е. способность фокусировать электроны, зависит от напряженности магнитного поля вблизи оси, для ее увеличения желательно сконцентрировать магнитное поле в минимально возможном объеме. Практически это достигается тем, что катушку почти полностью закрывают магнитной «броней» из специального никель-кобальтового сплава, оставляя лишь узкий зазор в ее внутренней части. Создаваемое таким образом магнитное поле может быть в 10–100 тыс. раз более сильным, чем магнитное поле Земли на земной поверхности.

Что можно увидеть через электронный микроскоп

Схема ОПЭМ представлена на рис. 2. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает неувеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец помещается в магнитном поле объективной линзы с большой оптической силой – самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объективная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей 1000. Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до

1 000 000. (При увеличении в миллион раз грейпфрут вырастает до размеров Земли.) Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо-влево.

Что можно увидеть через электронный микроскоп

Изображение.

Контраст в ОПЭМ обусловлен рассеянием электронов при прохождении электронного пучка через образец. Если образец достаточно тонок, то доля рассеянных электронов невелика. При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие – из-за столкновений с электронами атомов, а третьи проходят, не претерпевая рассеяния. Степень рассеяния в какой-либо области образца зависит от толщины образца в этой области, его плотности и средней атомной массы (числа протонов) в данной точке. Электроны, выходящие из диафрагмы с угловым отклонением, превышающим некоторый предел, уже не могут вернуться в пучок, несущий изображение, а поэтому сильно рассеивающие участки повышенной плотности, увеличенной толщины, места расположения тяжелых атомов выглядят на изображении как темные зоны на светлом фоне. Такое изображение называется светлопольным, поскольку на нем окружающее поле светлее объекта. Но можно сделать так, чтобы электрическая отклоняющая система пропускала в диафрагму объектива только те или иные из рассеянных электронов. Тогда образец выглядит светлым на темном поле. Слабо рассеивающий объект часто бывает удобнее рассматривать в режиме темного поля.

Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран, что позволяет записать его на видеоленту. Видеозапись применяется для регистрации изображений, меняющихся во времени, например, в связи с протеканием химической реакции. Чаще всего окончательное изображение регистрируется на фотопленке или фотопластинке. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Кроме того, на единице площади фотопленки может быть зарегистрировано в 100 раз больше сигналов, чем на единице площади видеоленты. Благодаря этому изображение, зарегистрированное на фотопленке, можно дополнительно увеличить примерно в 10 раз без потери четкости.

Разрешение.

Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50–100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ок. 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ок. 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.

РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП

РЭМ, ставший важнейшим прибором для научных исследований, служит хорошим дополнением ОПЭМ. В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис. 3). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн.

Что можно увидеть через электронный микроскоп

Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того, поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать «толстые» образцы.

Отражательный РЭМ.

Отражательный РЭМ предназначен для исследования массивных образцов. Поскольку контраст, возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец, на изображении выявляется поверхностная структура. (Интенсивность обратного рассеяния и глубина, на которой оно происходит, зависят от энергии электронов падающего пучка. Эмиссия вторичных электронов определяется, в основном составом поверхности и электропроводностью образца.) Оба эти сигнала несут информацию об общих характеристиках образца. Благодаря малой сходимости электронного пучка можно проводить наблюдения с гораздо большей глубиной резкости, чем при работе со световым микроскопом, и получать прекрасные объемные микрофотографии поверхностей с весьма развитым рельефом. Регистрируя рентгеновское излучение, испускаемое образцом, можно в дополнение к данным о рельефе получать информацию о химическом составе образца в поверхностном слое глубиной

0,001 мм. О составе материала на поверхности можно судить и по измеренной энергии, с которой эмиттируются те или иные электроны.

Все сложности работы с РЭМ обусловлены, в основном, его системами регистрации и электронной визуализации. В приборе с полным комплексом детекторов, наряду со всеми функциями РЭМ, предусматривается рабочий режим электронно-зондового микроанализатора.

Растровый просвечивающий электронный микроскоп.

Растровый просвечивающий электронный микроскоп (РПЭМ) – это особый вид РЭМ. Он рассчитан на тонкие образцы, такие же, как и исследуемые в ОПЭМ. Схема РПЭМ отличается от схемы на рис. 3 только тем, что в ней нет детекторов, расположенных выше образца. Поскольку изображение формируется бегущим пучком (а не пучком, освещающим весь исследуемый участок образца), требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время. В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильное электрическое поле (ок. Что можно увидеть через электронный микроскоп В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра. Это поле буквально вытягивает миллиарды электронов из проволочки без всякого нагрева. Яркость такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой (см. выше), а испускаемые им электроны могут быть сфокусированы в пучок диаметром менее 1 нм. Были даже получены пучки, диаметр которых близок к 0,2 нм.

Автоэлектронные источники могут работать только в условиях сверхвысокого вакуума (при давлениях ниже Что можно увидеть через электронный микроскопПа), в которых полностью отсутствуют такие загрязнения, как пары углеводородов и воды, и становится возможным получение изображений с высоким разрешением. Благодаря таким сверхчистым условиям можно исследовать процессы и явления, недоступные ЭМ с обычными вакуумными системами.

Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны проходят сквозь такие образцы почти без рассеяния. Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод, расположенный под образцом (рис. 3). Сигнал, снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, – более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие. Если электронный пучок сфокусирован в точку диаметром менее 0,5 нм, то можно получить изображение отдельных атомов. Реально удается различать на изображении, полученном в РПЭМ, отдельные атомы с атомной массой железа (т.е. 26 и более).

Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор, расположенный под этим детектором, позволяет отделить первые от вторых. Измеряя энергию, потерянную электронами при рассеянии, можно получить важную информацию об образце. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.

РАСТРОВЫЙ ТУННЕЛЬНЫЙ МИКРОСКОП

В ЭМ, рассмотренных выше, для фокусировки электронов применяются магнитные линзы. Данный раздел посвящен ЭМ без линз. Но, прежде чем переходить к растровому туннельному микроскопу (РТМ), будет полезно кратко остановиться на двух старых видах безлинзового микроскопа, в которых формируется проецированное теневое изображение.

Автоэлектронный и автоионный проекторы.

Автоэлектронный источник, применяемый в РПЭМ, с начала 1950-х годов применялся в теневых проекторах. В автоэлектронном проекторе электроны, испускаемые за счет автоэлектронной эмиссии острием очень малого диаметра, ускоряются в направлении люминесцентного экрана, расположенного на расстоянии нескольких сантиметров от острия. В результате на экране возникает проецированное изображение поверхности острия и находящихся на этой поверхности частиц с увеличением, равным отношению радиуса экрана к радиусу острия (порядка Что можно увидеть через электронный микроскоп). Более высокое разрешение достигается в автоионном проекторе, в котором проецирование изображения осуществляется ионами гелия (или некоторых других элементов), эффективная длина волны которых меньше, чем у электронов. Это позволяет получать изображения, показывающие истинное расположение атомов в кристаллической решетке материала острия. Поэтому автоионные проекторы используются, в частности, для исследования кристаллической структуры и ее дефектов в материалах, из которых могут быть изготовлены такие острия.

Растровый туннельный микроскоп (РТМ).

В этом микроскопе тоже используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом.

РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Вибрации подавляются благодаря жесткой конструкции и малым размерам микроскопа (не более кулака), а также применению многослойных резиновых амортизаторов. Высокую точность обеспечивают пьезоэлектрические материалы, которые удлиняются и сокращаются под действием внешнего электрического поля. Подавая напряжение порядка 10 –5 В, можно изменять размеры таких материалов на 0,1 нм и менее. Это дает возможность, закрепив острие на элементе из пьезоэлектрического материала, перемещать его в трех взаимно перпендикулярных направлениях с точностью порядка атомных размеров.

ТЕХНИКА ЭЛЕКТРОННОЙ МИКРОСКОПИИ

Вряд ли остался какой-либо сектор исследований в области биологии и материаловедения, где бы не применялась просвечивающая электронная микроскопия (ПЭМ); это обеспечено успехами техники приготовления образцов.

Все применяемые в электронной микроскопии методики нацелены на получение предельно тонкого образца и обеспечение максимального контраста между ним и подложкой, которая необходима ему в качестве опоры. Основная методика рассчитана на образцы толщиной 2–200 нм, поддерживаемые тонкими пластмассовыми или углеродными пленками, которые кладутся на сетку с размером ячейки ок. 0,05 мм. (Подходящий образец, каким бы способом он ни был получен, обрабатывается так, чтобы увеличить интенсивность рассеяния электронов на исследуемом объекте.) Если контраст достаточно велик, то глаз наблюдателя может без напряжения различить детали, находящиеся на расстоянии 0,1–0,2 мм друг от друга. Следовательно, для того, чтобы на изображении, создаваемом электронным микроскопом, были различимы детали, разделенные на образце расстоянием в 1 нм, необходимо полное увеличение порядка 100–200 тыс. Лучшие из микроскопов могут создать на фотопластинке изображение образца с таким увеличением, но при этом изображается слишком малый участок. Обычно делают микроснимок с меньшим увеличением, а затем увеличивают его фотографически. Фотопластинка разрешает на длине 10 см ок. 10 000 линий. Если каждая линия соответствует на образце некой структуре протяженностью 0,5 нм, то для регистрации такой структуры необходимо увеличение не менее 20 000, тогда как при помощи РЭМ и РПЭМ, в которых изображение регистрируется электронной системой и развертывается на телевизионном экране, может быть разрешено только ок. 1000 линий. Таким образом, при использовании телевизионного монитора минимально необходимое увеличение примерно в 10 раз больше, чем при фоторегистрации.

Биологические препараты.

Электронная микроскопия широко применяется в биологических и медицинских исследованиях. Разработаны методики фиксации, заливки и получения тонких срезов тканей для исследования в ОПЭМ и РПЭМ и методики фиксации для исследования объемных образцов в РЭМ. Эти методики дают возможность исследовать организацию клеток на макромолекулярном уровне. Электронная микроскопия выявила компоненты клетки и детали строения мембран, митохондрий, эндоплазматической сети, рибосом и множества других органелл, входящих в состав клетки. Образец сначала фиксируют глутаральдегидом или другими фиксирующими веществами, а затем обезвоживают и заливают пластмассой. Методы криофиксации (фиксации при очень низких – криогенных – температурах) позволяют сохранить структуру и состав без использования химических фиксирующих веществ. Кроме того, криогенные методы позволяют получать изображения замороженных биологических образцов без их обезвоживания. При помощи ультрамикротомов с лезвиями из полированного алмаза или сколотого стекла можно делать срезы тканей толщиной 30–40 нм. Смонтированные гистологические препараты могут быть окрашены соединениями тяжелых металлов (свинца, осмия, золота, вольфрама, урана) для усиления контраста отдельных компонентов или структур.

Что можно увидеть через электронный микроскоп

Биологические исследования были распространены на микроорганизмы, особенно на вирусы, которые не разрешаются световыми микроскопами. ПЭМ позволила выявить, например, структуры бактериофагов и расположение субъединиц в белковых оболочках вирусов. Кроме того, методами позитивного и негативного окрашивания удалось выявить структуру с субъединицами в ряде других важных биологических микроструктур. Методы усиления контраста нуклеиновых кислот позволили наблюдать одно- и двунитные ДНК. Эти длинные линейные молекулы распластывают в слой основного белка и накладывают на тонкую пленку. Затем на образец вакуумным напылением наносят очень тонкий слой тяжелого металла. Этот слой тяжелого металла «оттеняет» образец, благодаря чему последний при наблюдении в ОПЭМ или РПЭМ выглядит как бы освещенным с той стороны, с которой напылялся металл. Если же вращать образец во время напыления, то металл накапливается вокруг частиц со всех сторон равномерно (как снежный ком).

Небиологические материалы.

ПЭМ применяется в исследованиях материалов для изучения тонких кристаллов и границ между разными материалами. Чтобы получить изображение границы раздела с большим разрешением, образец заливают пластмассой, делают срез образца, перпендикулярный границе, а затем утоньшают его так, чтобы граница была видна на заостренной кромке. Кристаллическая решетка сильно рассеивает электроны в определенных направлениях, давая дифракционную картину. Изображение кристаллического образца в значительной мере определяется этой картиной; контраст сильно зависит от ориентации, толщины и совершенства кристаллической решетки. Изменения контраста на изображении позволяют изучать кристаллическую решетку и ее несовершенства в масштабе атомных размеров. Получаемая при этом информация дополняет ту, которую дает рентгенографический анализ объемных образцов, так как ЭМ дает возможность непосредственно видеть во всех деталях дислокации, дефекты упаковки и границы зерен. Кроме того, в ЭМ можно снимать электронограммы и наблюдать картины дифракции от выделенных участков образца. Если диафрагму объектива настроить так, чтобы через нее проходили только один дифрагированный и нерассеянный центральный пучки, то можно получать изображение определенной системы кристаллических плоскостей, которая дает этот дифрагированный пучок. Современные приборы позволяют разрешать периоды решетки величиной 0,1 нм. Исследовать кристаллы можно также методом темнопольного изображения, при котором перекрывают центральный пучок, так что изображение формируется одним или несколькими дифрагированными пучками. Все эти методы дали важную информацию о структуре очень многих материалов и существенно прояснили физику кристаллов и их свойства. Например, анализ ПЭМ-изображений кристаллической решетки тонких малоразмерных квазикристаллов в сочетании с анализом их электронограмм позволил в 1985 открыть материалы с симметрией пятого порядка.

Высоковольтная микроскопия.

В настоящее время промышленность выпускает высоковольтные варианты ОПЭМ и РПЭМ с ускоряющим напряжением от 300 до 400 кВ. Такие микроскопы имеют более высокую проникающую способность, чем у низковольтных приборов, причем почти не уступают в этом отношении микроскопам с напряжением 1 млн. вольт, которые строились в прошлом. Современные высоковольтные микроскопы достаточно компактны и могут быть установлены в обычном лабораторном помещении. Их повышенная проникающая способность оказывается очень ценным свойством при исследовании дефектов в более толстых кристаллах, особенно таких, из которых невозможно сделать тонкие образцы. В биологии их высокая проникающая способность дает возможность исследовать целые клетки, не разрезая их. Кроме того, с помощью таких микроскопов можно получать объемные изображения толстых объектов.

Низковольтная микроскопия.

Выпускаются также РЭМ с ускоряющим напряжением, составляющим всего несколько сот вольт. Даже при столь низких напряжениях длина волны электронов меньше 0,1 нм, так что пространственное разрешение и здесь ограничивается аберрациями магнитных линз. Однако, поскольку электроны с такой низкой энергией проникают неглубоко под поверхность образца, почти все электроны, участвующие в формировании изображения, приходят из области, расположенной очень близко к поверхности, благодаря чему повышается разрешение поверхностного рельефа. С помощью низковольтных РЭМ были получены изображения на твердых поверхностях объектов размером менее 1 нм.

Радиационное повреждение.

Поскольку электроны представляют собой ионизирующее излучение, образец в ЭМ постоянно подвергается его воздействию. (В результате этого воздействия возникают вторичные электроны, используемые в РЭМ.) Следовательно, образцы всегда подвергаются радиационному повреждению. Типичная доза излучения, поглощаемая тонким образцом за время регистрации микрофотографии в ОПЭМ, примерно соответствует энергии, которой было бы достаточно для полного испарения холодной воды из пруда глубиной 4 м с площадью поверхности 1 га. Чтобы уменьшить радиационное повреждение образца, необходимо использовать различные методы его подготовки: окрашивание, заливку, замораживание. Кроме того, можно регистрировать изображение при дозах электронов, в 100–1000 раз меньших, нежели по стандартной методике, а затем улучшать его методами компьютерной обработки изображений.

ИСТОРИЧЕСКАЯ СПРАВКА

История создания электронного микроскопа – замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры.

В 1931 Р.Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного ОПЭМ. (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б. фон Боррис построили прототип промышленного ОПЭМ для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада).

Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой «Сименс-Хальске» в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании.

РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ’ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию по физике. См. также КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ; МОЛЕКУЛ СТРОЕНИЕ; НУКЛЕИНОВЫЕ КИСЛОТЫ; ФИЗИКА ТВЕРДОГО ТЕЛА; ВИРУСЫ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *