Что можно сказать об ускорении которое
Что можно сказать об ускорении которое
1. Какие ускорения приобретают тела в результате взаимодействия?
Действие одного тела на другое никогда не бывает односторонним, тела всегда взаимодействуют друг с другом.
При взаимодействии тел каждое тело действует на другое и сообщает ему ускорение.
Ускорения обоих тел направлены в противоположные стороны.
Отношение модулей ускорений взаимодействующих тел равно обратному отношению их масс.
Чем больше масса тела, тем меньшее оно получает ускорение при взаимодействии с другим телом, и наоборот.
2. Что можно сказать об ускорении, которое получает Земля при взаимодействии с идущим по ней человеком?
Идущий по земле человек движется вперед благодаря тому, что отталкивается ногами от земли, т. е. взаимодействует с ней.
Человек и земля действуют друг на друга с одинаковыми по модулю и противоположно направленными силами.
При этом оба тела (Земля и человек) получают ускорения, обратно пропорциональные их массам.
Так как масса Земли огромна по сравнению с массой человека, то ускорение Земли практически равно нулю, т. е. она практически не меняет свою скорость.
Человек же приходит в движение относительно Земли.
В результате точка о землю он получает достаточное (видимое) ускорение.
3. С какой силой действуют друг на друга тела при взаимодействии?
По 2-у закону Ньютона произведение массы тела на его ускорение равно приложенной к телу силе.
Значит,
4. Как формулируется третий закон Ньютона? Как он записывается математически?
Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.
Знак «минус» показывает, что векторы сил направлены в разные стороны.
Третий закон справедлив, когда движения рассматриваются относительно инерциальных систем отсчета.
5. С помощью каких опытов можно доказать, что силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению?
3) Здесь тоже тела действуют друг на друга на расстоянии.
Два демонстрационных динамометра закреплены на штативе.
На стержни динамометров прикреплены плоские магниты.
Магниты отталкиваются, так как обращены друг к другу одноименными полюсами.
Сначала динамометры были разведены на такое расстояние, при котором силы взаимодействия магнитов были практически равны нулю и не регистрировались динамометрами.
Затем один из динамометров стали приближать к другому.
При этом стрелки динамометров начали отклоняться от нуля в разные стороны.
Значит, силы, с которыми магниты действуют друг на друга, противоположны по направлению.
При сближении магнитов показания динамометров возрастают, но в каждый момент они равны друг другу.
Значит, магниты отталкиваются с равными по модулю силами.
4) Два мальчика на роликовых коньках тянут за концы веревок, привязвнных к сцепленным динамометрам.
В результате оба мальчика движутся навстречу друг другу.
Динамометры показывают одинаковые по величине силы.
6. Что можно сказать о силах, возникающих при взаимодействии тел?
1. Из-за взаимного действия тел друг на друга силы всегда появляются парами.
Если на какое-то тело действует сила, то обязательно есть какое-то другое тело, на которое первое тело действует с такой же по абсолютному значению силой, но направленной в противоположную сторону.
2. Силы равны по модулю.
3. Силы противоположны по направлению.
4. Силы приложены к разным телам и не компенсируют (не уравновешивают) друг друга.
5. Силы одинаковы по своей природе: или обе силы упругости, или обе силы тяготения, или обе силы магнитные и т.д.
Например:
— если предметы лежат на опоре, возникают силы упругости, посредством которых тело и опора взаимодействуют друг с другом,
— Земля и Луна взаимодействуют друг с другом посредством сил всемирного тяготения,
— стальной гвоздь и магнит притягиваются благодаря действию магнитных сил.
7. Почему неверно говорить о равновесии сил, возникающих при взаимодействии тел?
Силы, о которых говорится в третьем законе Ньютона, никогда не уравновешивают друг друга, поскольку они приложены к разным телам.
8. Уравновешивают (компенсируют) ли друг друга силы, которые возникают при взаимодействии двух тел?
Силы, возникающие при взаимодействии двух тел, приложены к разным телам.
Поэтому нельзя сказать, что сумма сил, приложенных к каждому телу, равна нулю, что эти силы уравновешиваются.
Уравновешиваться могут лишь силы, приложенные к одному и тому же телу.
, Вопросы.
1. Пользуясь рисунками 21, 22 и 23, расскажите, как проводились изображенные на них опыты и какие выводы были сделаны на основании полученных результатов.
Описание опыта см. стр. 48-49. Во всех опытах с помощью двух динамометров измеряются силы, с которыми два тела действуют друг на друга. Вывод: два тела действуют друг на друга с силами равными по величине и противоположными по направлению.
2. Как читается третий закон Ньютона? Как он записывается математически?
3. Что можно сказать об ускорении, которое получает Земля при взаимодействии с идущем по ней человеком? Ответ обоснуйте.
4. Приведите примеры, показывающие, что силы, возникающие в результате взаимодействия двух тел, одинаковы по своей природе.
Космические тела (планеты, спутники, Солнце) взаимодействуют друг с другом посредством сил всемирного тяготения. Магниты притягиваются или отталкиваются из за магнитных сил.
5. Почему неверно говорить о равновесии сил, возникающих при взаимодействии тел?
Так как силы приложены к разным телам, то они не уравновешивают друг друга. Равные по модулю и противоположно направленные силы уравновешивают друг друга, если они приложены к одному телу.
1. На рисунке 24 изображён лежащий на доске камень. Сделайте в тетради такой же рисунок и изобразите стрелочками две силы, которые по третьему закону Ньютона равны друг другу. Что это за силы? Обозначьте их.
2. Будет ли превышен предел измерений динамометра Д, изображенного на рисунке 25, если он рассчитан на измерение сил до 100 Н включительно?
Предел измерений динамометра не будет превышен, т.к. в итоге на него действует сила 80 Н.
Что можно сказать § 20 № 2 ГДЗ Физика 9 класс Кикоин И.К.
Что можно сказать об ускорениях двух взаимодействующих тел?
Отношение модулей ускорений двух данных взаимодействующих тел всегда одно и то же.
Каким движениям соответствуют графики 1 и 2 на рисунке 29? ( Подробнее. )
На каком расстоянии от Земли оказался бы космический корабль через 30 мин после старта, если бы он все время двигался прямолинейно с ( Подробнее. )
Чтобы оторваться от земли, самолет должен набрать скорость 180 м/с. На каком расстоянии от места старта на взлетной полосе самолет ( Подробнее. )
Ускорение свободного падения
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Сила тяготения
В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓
Ускорение свободного падения
Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F = mg
F — сила тяжести [Н]
m — масса тела [кг]
g — ускорение свободного падения [м/с 2 ]
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.
Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
Приравниваем правые части:
Делим на массу левую и правую части:
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Формула ускорения свободного падения
g — ускорение свободного падения [м/с 2 ]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.
Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.
Ускорение свободного падения на разных планетах
Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.
Для этого нам понадобятся следующие величины:
Подставим значения в формулу:
И кому же верить?
Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.
Небесное тело
Ускорение свободного падения, м/с 2
Диаметр, км
Расстояние до Солнца, миллионы км
Масса, кг
Соотношение с массой Земли
850. Свойством повторяемости обладают качания маятника часов, сезонные изменения температур, движение стрелки часов, колебания струны, вибрация крыльев самолета, движение Земли вокруг Солнца, колебания напряжения в сети электрического тока. Какие из перечисленных процессов можно назвать механическими колебательными процессами?
К механическим колебаниям относятся: качание маятника, движение стрелки часов, колебания струны, вибрация крыльев самолета, движение Земли вокруг Солнца.
851. Будут ли возможны колебания шарика, закрепленного на пружине, если вся система придет в состояние невесомости?
Да, поскольку колебания этой системы не зависят от силы тяжести.
852. Маятник часов совершает незатухающие гармонические колебания. Какие из величин — смещение, амплитуда, период, частота, скорость, ускорение — являются постоянными и какие переменными?
Постоянные: амплитуда, период, частота.
Переменные: смещение, скорость, ускорение.
853. Шарик, подвешенный на нити, совершает вращение в горизонтальной плоскости, описывая окружность диаметром d (рис. 244). Если наблюдение производится в плоскости вращения, то движение шарика воспринимается как гармоническое колебание. Чему равна амплитуда колебаний? Что можно сказать о частоте обращения шарика и частоте колебаний?
Амплитуда равна d/2; частота обращения равна частоте колебаний шарика.
854. Частота колебаний напряжения в электрической сети равна 50 Гц. Определите период колебания.
855. При измерении пульса человека было зафиксировано 75 пульсаций крови за 1 мин. Определите период сокращений сердечной мышцы.
856. У вала электрической швейной машинки частота вращения равна 1200 об/мин. За один оборот игла совершает одно колебание. Определите период колебания иглы.
857. Фреза имеет частоту вращения с 600 об/мин. Число зубьев на фрезе равно 40. С какой частотой вибрирует станок? Определите период вибраций.
858. Какова частота колебаний поршня двигателя автомобиля, если за 0,5 мин поршень совершает 600 колебаний?
859. Частота колебаний крыльев вороны в полете равна в среднем 3 Гц. Сколько взмахов крыльями сделает ворона, пролетев путь 650 м со скоростью 13 м/с?
860. Для тела, совершающего свободные колебания, график зависимости смещения от времени представлен на рисунке 245. Определите период, частоту и амплитуду колебаний.
861. Колебания материальной точки описываются следующим уравнением: х =70 sin 0,5 t. Определите амплитуду колебаний и смещение точки от положения равновесия в следующие моменты времени: t1 = π/2 и t2 = π/3. При каких фазах смещение по модулю равно половине амплитуды?
862. Чему равна разность фаз свободных колебаний рук человека при ходьбе?
Разность фаз составляет π.
863. Гармоническое колебание описывается уравнением х = 2 sin (π/2t + π/4). Чему равны циклическая частота колебаний, линейная частота колебаний, начальная фаза колебаний?
864. Можно ли предположить, что одно и то же колебание может быть описано с помощью следующих уравнений:
х = 3 sin (π/4 t+π/6), х = 3 cos(π/4 t + π/3), х = 3 cos (π/4 t – π/3)?
Да.
866. Максимально или минимально ускорение в те моменты времени, когда скорость колеблющегося пружинного маятника равна 0?
Максимально.
867. Что можно сказать об ускорении, которое испытывает колеблющийся груз, подвешенный на пружине, в момент прохождения положения равновесия?
Ускорение максимально.
869. Каково направление равнодействующей сил, приложенных к грузу маятника (рис. 246), когда этот груз находится в крайних положениях; проходит положение равновесия?
При нахождении груза в крайних положениях равнодействующая сил направлена по касательной к дуге, описываемой грузами. В положении равновесия она равна 0.
870. Почему на доску качелей встать в полный рост труднее всего в тот момент, когда качели проходят положение равновесия?
Потому что в этот момент доска имеет наибольшую скорость.
871. Чему равен период колебания математического маятника, если длина нити равна 9,8 м?
872. Два математических маятника совершают свободные колебания. Графики зависимости смещения от времени представлены на рисунке 247. Определите период колебания каждого из маятников и отношение длин маятников.
873. Математический маятник длиной 0,99 м совершает 50 полных колебаний за 1 мин 40 с. Чему равно ускорение свободного падения в данном месте на поверхности Земли?
874. Во сколько раз надо изменить длину математического маятника, чтобы период колебания изменился в 2 раза?
Так как период пропорционален корню квадратному из длины, то для удвоения периода длину следует увеличить в 4 раза.
875. Из двух математических маятников в одном и том же месте Земли один совершает 40 колебаний за некоторое время, а другой за то же время — 20 колебаний. Определите длину каждого из маятников, если один из них длиннее другого на 90 см.
876. В покоящейся ракете колеблется математический маятник. При движении ракеты вверх с некоторым ускорением период колебания маятника уменьшился вдвое. Во сколько раз ускорение, с которым движется ракета, больше ускорения свободного падения?
877. Груз массой 50 г, прикрепленный к пружине, жесткость которой равна 0,49 Н/м, совершает колебания. Какой длины надо взять математический маятник, чтобы его частота колебаний была равна частоте колебаний пружинного маятника?
878. Как изменится период и частота колебаний упругой доски, установленной на вышке для прыжков в воду, если после взрослого человека на доске раскачивается мальчик, готовясь к прыжку?
Период уменьшится, частота увеличится.
879. Когда груз неподвижно висел на вертикальной пружине, ее удлинение было равно 5 см. Затем груз оттянули вниз и отпустили, вследствие чего он начал колебаться. Каков период колебания?
880. Шарик с отверстием, прикрепленный к легкой пружине жесткостью 250 Н/м, может совершать незатухающие колебания вдоль стержня (рис. 248). Чему равно ускорение, испытываемое шариком (Рис. 248) в положении равновесия и в крайних положениях, если амплитуда колебаний равна 4 см, а масса 50 г?
881. Опишите превращения механической энергии, совершающиеся в процессе свободных незатухающих колебаний пружинного маятника в горизонтальном направлении; в вертикальном направлении. Сохраняется ли полная механическая энергия в процессе колебаний?
В горизонтальном направлении: в положении равновесия: Еп пр = 0; Екин – мах. В крайних положениях: Екин = 0; Еп пр – мах. В вертикальном направлении: положение равновесия сместится вниз от точки подвеса маятника за счет потенциальной энергии груза, скомпенсированной потенциальной энергией пружины. Превращения энергии осуществляются точно также, как и в горизонтальном направлении. Полная механическая энергия остается неизменной.
882. Груз массой 400 г совершает колебания на пружине жесткостью 250 Н/м. Амплитуда колебаний равна 15 см. Чему равны полная механическая энергия колебаний и наибольшая скорость движения груза?
883. По условию задачи 880 определите полную энергию колебаний шарика, а также потенциальную и кинетическую энергии в тот момент, когда шарик находится в точке с координатой х = 2 см. За начало отсчета примите положение равновесия шарика.
884. Груз, подвешенный на пружине жесткостью 1 кН/м, колеблется с амплитудой 2 см по закону: х = A sin (ώt + φ0). Определите кинетическую и потенциальную энергии при фазе π/6 рад.
885. Почему легче идти в обуви на толстой упругой подошве при определенной частоте шагов? Объясните с точки зрения превращения энергии.
При определенной частоте шагов циклическая частота со вынуждающей силы приближается к циклической частоте со0 колебательной системы — упругой подошвы. Возникает резонанс.
886. Как изменяется амплитуда и какие превращения претерпевает энергия при колебаниях дерева при одиночном порыве ветра; автомобиля при работе двигателя на холостом ходу; коромысла весов при взвешивании?
При колебании дерева, при одиночном порыве ветра, и коромысла весов при взвешивании амплитуда и энергия уменьшаются с каждым последующим колебанием.
887. Вода, которую мальчик несет в ведре, начинает сильно расплескиваться. Мальчик меняет темп ходьбы или просто «сбивает ногу», и расплескивание прекращается. Почему так происходит?
Мальчик меняет фазу своих колебаний. Колебания воды гасятся за счет колебаний мальчика.
888. Максимальную амплитуду вертикальных колебаний мячика, подвешенного на тонкой резинке, можно получить, если его нести, делая за 1 мин 48 шагов. Определите коэффициент упругости резинки, если масса мячика равна 60 г.