Что можно сказать о направлении вектора ускорения

Вопросы.

1. Что является причиной ускоренного движения тел?

Если на тело действует сила, то вследствие этого тело движется с ускорением.

2. Приведите примеры из жизни, свидетельствующие о том, что чем больше приложенная к телу сила, тем больше сообщаемое этой силой ускорение.

Мяч, по которому сильнее ударили, улетит дальше, так как он будет двигаться с большей скоростью, потому что ему было сообщено при ударе большее ускорение.

3. Пользуясь рисунком 20, расскажите, как ставились опыты и какие выводы следуют из этих опытов.

Что можно сказать о направлении вектора ускорения

Что можно сказать о направлении вектора ускорения

4. Как читается второй закон Ньютона? Какой математической формулой он выражается?

Что можно сказать о направлении вектора ускорения

5. Что можно сказать о направлении вектора ускорения и вектора равнодействующей приложенных к телу сил?

6. Выразите единицу силы через единицы массы и ускорения.

Что можно сказать о направлении вектора ускорения

2. Через 20 с после начала движения электровоз развил скорость 4 м/с. Найдите силу, сообщающую ускорение, если масса электровоза равна 184 т.

Что можно сказать о направлении вектора ускорения

3. Два тела равной массы движутся с ускорениями 0,08 м/с 2 и 0,64 м/с 2 соответственно. Равны ли модули действующих на тела сил? Чему равна сила, действующая на второе тело, если на первое действует сила 1,2 Н?

Что можно сказать о направлении вектора ускорения

Что можно сказать о направлении вектора ускорения

5. Баскетбольный мяч, пройдя сквозь кольцо и сетку, под действием силы тяжести сначала движется вниз с возрастающей скоростью, а после удара о пол- вверх с уменьшающейся скоростью. Как направлены векторы ускорения, скорости и перемещения мяча по отношению к силе тяжести при его движении вниз? вверх?

6. Тело движется прямолинейно с постоянным ускорением. Какая величина, характеризующая движение этого тела, всегда сонаправлена с равнодействующей приложенных к телу сил, а какие величины могут быть направлены противоположно равнодействующей?

Вектор ускорения всегда сонаправлен равнодействующей приложенных сил, а векторы скорости и перемещения могут быть направлены как противоположно, так и в одном направлении.

Источник

Ускорение при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

Что можно сказать о направлении вектора ускорения

v — скорость тела в данный момент времени, v 0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

Что можно сказать о направлении вектора ускорения

Проекция ускорения

Что можно сказать о направлении вектора ускорения

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают ( а ↑↑ v ).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу ( а ↑↓ v ).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

Что можно сказать о направлении вектора ускорения

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

Что можно сказать о направлении вектора ускорения

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

Что можно сказать о направлении вектора ускорения

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

Что можно сказать о направлении вектора ускорения

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.

Что можно сказать о направлении вектора ускорения

Алгоритм решения

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Запишем исходные данные:

Формула, которая связывает ускорение тела с пройденным путем:

Что можно сказать о направлении вектора ускорения

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

Что можно сказать о направлении вектора ускорения

Подставим известные данные и вычислим ускорение автомобиля:

Что можно сказать о направлении вектора ускорения

pазбирался: Алиса Никитина | обсудить разбор | оценить

Внимательно прочитайте текст задани я и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с? Что можно сказать о направлении вектора ускорения

Алгоритм решения

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

Используем для вычислений следующую формулу:

Что можно сказать о направлении вектора ускорения

Подставим в нее известные данные и сделаем вычисления:

Что можно сказать о направлении вектора ускорения

Этому значению соответствует график «г».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Записываем формулу ускорения:

Что можно сказать о направлении вектора ускорения

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:

Что можно сказать о направлении вектора ускорения

Выбираем любые 2 точки графика. Пусть это будут:

Подставляем данные формулу и вычисляем модуль ускорения:

Что можно сказать о направлении вектора ускорения

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Векторы ускорения и скорости. Ускорение и сила. Направления тангенциального и нормального ускорений

Как известно, любая физическая величина относится к одному из двух типов, она является либо скалярной, либо векторной. В данной статье рассмотрим такие кинематические характеристики как скорость и ускорение, а также покажем, куда направлены векторы ускорения и скорости.

Что такое скорость и ускорение?

Что можно сказать о направлении вектора ускорения

Что можно сказать о направлении вектора ускорения

Обе величины, названные в этом пункте, являются важными характеристиками любого вида движения, будь то перемещение тела по прямой линии или по криволинейной траектории.

Что можно сказать о направлении вектора ускорения Вам будет интересно: Дистанционное образование в России: история, статистика и преимущества

Скоростью называется быстрота изменения координат во времени. Математически эта величина равна производной по времени пройденного пути, то есть:

Здесь вектор l¯ направлен от начальной точки пути к конечной.

В свою очередь ускорение – это скорость, с которой изменяется во времени сама скорость. В виде формулы оно может быть записано так:

Очевидно, что взяв вторую производную от вектора перемещения l¯ по времени, мы также получим значение ускорения.

Поскольку скорость измеряется в метрах в секунду, то ускорение, согласно записанному выражению, измеряется в метрах в секунду в квадрате.

Что можно сказать о направлении вектора ускорения

Куда направлены векторы ускорения и скорости?

Вектор скорости тела направлен в сторону движения всегда, независимо от того, замедляется или ускоряется тело, движется оно по прямой или по кривой. Если говорить геометрическими терминами, то вектор скорости направлен по касательной к точке траектории, в которой в данный момент находится тело.

Вектор ускорения точки материальной или тела не имеет ничего общего со скоростью. Этот вектор направлен в сторону изменения скорости. Например, для прямолинейного движения величина a¯ может как совпадать по направлению с v¯, так и быть противоположной v¯.

Действующая на тело сила и ускорение

Что можно сказать о направлении вектора ускорения

Мы выяснили, что вектор ускорения тела направлен в сторону изменения вектора скорости. Тем не менее не всегда можно легко определить, как меняется скорость в данной точке траектории. Более того, для определения изменения скорости необходимо выполнить операцию разности векторов. Чтобы избежать этих трудностей в определении направления вектора a¯, существует еще один способ быстро его узнать.

Ниже записан знаменитый и хорошо известный каждому школьнику закон Ньютона:

Формула показывает, что причиной возникновения ускорения у тел является действующая на них сила. Поскольку масса m является скаляром, то вектор силы F¯ и вектор ускорения a¯ направлены одинаково. Этот факт следует запомнить и применять на практике всегда, когда возникает необходимость в определении направления величины a¯.

Если на тело действуют несколько разных сил, тогда направление вектора ускорения будет равно результирующему вектору всех сил.

Движение по окружности и ускорение

Что можно сказать о направлении вектора ускорения

Когда тело перемещается по прямой линии, то ускорение направлено либо вперед, либо назад. В случае же движения по окружности ситуация усложняется тем, что вектор скорости постоянно меняет свое направление. В виду сказанного, полное ускорение определяется двумя его составляющими: тангенциальным и нормальным ускорениями.

Тангенциальное ускорение направлено точно так же, как вектор скорости, или против него. Иными словами, эта компонента ускорения направлена вдоль касательной к траектории. Ускорение тангенциальное описывает изменение модуля самой скорости.

Ускорение нормальное направлено вдоль нормали к данной точке траектории с учетом ее кривизны. В случае движения по окружности вектор этой компоненты указывает на центр, то есть нормальное ускорение направлено вдоль радиуса вращения. Эту компоненту часто называют центростремительной.

Полное ускорение представляет собой сумму названных компонент, поэтому его вектор может быть направлен произвольным образом по отношению к линии окружности.

Если тело совершает вращение без изменения линейной скорости, то существует отличная от нуля только нормальная компонента, поэтому вектор полного ускорения направлен к центру окружности. Заметим, что к этому центру также действует сила, удерживающая тело на его траектории. Например, сила гравитации Солнца удерживает нашу Землю и другие планеты на своих орбитах.

Источник

§ 11. Второй закон Ньютона

Из курса физики 7 класса вам известно, что причиной изменения скорости тела, а значит, и причиной возникновения ускорения является действие на это тело других тел с некоторой силой.

Что можно сказать о направлении вектора ускорения

Когда на тело действует сразу несколько сил, то оно движется с ускорением, если равнодействующая F этих сил не равна нулю. Напомним, что равнодействующей нескольких сил, одновременно приложенных к телу, называется сила, производящая на тело такое же действие, как все эти силы вместе.

Поскольку ускорение возникает в результате действия силы, то естественно предположить, что существует количественная взаимосвязь между этими величинами.

Жизненный опыт убеждает нас в том, что чем больше будет равнодействующая приложенных к телу сил, тем большее ускорение получит при этом тело. Например, чем сильнее футболист бьёт ногой по лежащему на поле мячу, тем большее ускорение приобретает при этом мяч и тем бо́льшую скорость он успевает набрать за те доли секунды, пока взаимодействует с ногой футболиста (о приобретённой мячом скорости можно судить по тому, насколько далеко он отлетает после удара).

Многочисленные наблюдения и опыты свидетельствуют также о том, что ускорения, получаемые телами, зависят от массы этих тел.

Что можно сказать о направлении вектора ускорения

Для подтверждения того, что при данной силе получаемое телом ускорение зависит от массы этого тела, рассмотрим ещё один опыт.

На рисунке 21, а изображена легкоподвижная тележка с укреплёнными на ней маленькой капельницей и двумя одинаковыми лёгкими вентиляторами (работающими от находящейся внутри каждого из них батарейки одной и той же мощности). Допустим, масса тележки вместе с капельницей и вентиляторами нам известна.

К тележке привязан один из концов нити, перекинутой через блок. К другому концу нити прикреплён небольшой груз. Этот груз нужен для того, чтобы скомпенсировать силу трения, действующую на движущуюся тележку.

Что можно сказать о направлении вектора ускорения

Вдоль траектории движения тележки расположим бумажную ленту. Откроем кран и включим вентиляторы. В результате взаимодействия их винтов с воздухом вентиляторы будут толкать тележку с некоторой постоянной силой по направлению к ограничителю на краю стола. При этом на бумажной ленте будут оставаться следы капель, падающих через равные промежутки времени Т.

После того как тележка остановится, выключим вентиляторы. Измерив расстояния между соседними метками на ленте, можно убедиться в том, что эти расстояния относятся как ряд нечётных последовательных чисел (1 : 3 : 5 : 7 : 9. ). Значит, под действием постоянной силы тележка двигалась равноускоренно.

Чтобы определить ускорение движения тележки, измерим модуль (s) вектора её перемещения (т. е. расстояние между крайними метками на ленте). Затем посчитаем число (n) промежутков между соседними метками на ленте, или, что то же самое, число промежутков времени Т за время движения тележки. По формуле t = Тn вычислим промежуток времени t, за который тележка переместилась на расстояние s. Из формулы Что можно сказать о направлении вектора ускорениявыразим модуль ускорения Что можно сказать о направлении вектора ускоренияи рассчитаем его.

Теперь удвоим массу всей движущейся системы (состоящей из тележки с вентиляторами и капельницей и груза на нити) с помощью гирь, как показано на рисунке 21, (б) (при этом одна гирька добавляется к уже имеющемуся грузу на конце нити для компенсации возросшей силы трения).

Повторим опыт. Определив ускорение и сравнив его с ускорением в предыдущем опыте, можно убедиться в том, что при действии одной и той же силы система тел, масса которой стала вдвое больше, приобрела в 2 раза меньшее ускорение, т. е. Что можно сказать о направлении вектора ускорения

Из рассмотренного опыта и ряда подобных следует, что ускорения, сообщаемые телам одной и той же постоянной силой, обратно пропорциональны массам этих тел.

С помощью этой же экспериментальной установки можно провести опыт, позволяющий установить количественную взаимосвязь между ускорением и силой, сообщающей телу это ускорение.

Для этого снимем добавленные в предыдущем опыте гири, чтобы масса системы опять стала такой, как в первом опыте (рис. 21, в). Но теперь приведём тележку в движение, включив только один вентилятор, в результате чего на тележку будет действовать в 2 раза меньшая сила, чем при двух включённых вентиляторах (придававших тележке ускорение а).

Как показывают измерения и вычисления, при уменьшении силы в 2 раза ускорение тоже уменьшается в 2 раза, т. е. становится равным Что можно сказать о направлении вектора ускорения(при неизменной массе тележки).

Значит, ускорение, с которым движется тело постоянной массы, прямо пропорционально приложенной к этому телу силе, в результате которой возникает ускорение.

Следует помнить, что во втором законе Ньютона, так же как и в первом, под телом подразумевается материальная точка, движение которой рассматривается в инерциальной системе отсчёта.

Математически второй закон Ньютона записывается так:

Что можно сказать о направлении вектора ускорения

Из формулы следует, что вектор ускорения совпадает по направлению с вектором равнодействующей приложенных к телу сил.

В скалярном виде второй закон Ньютона можно записать:

Что можно сказать о направлении вектора ускорения

где аx и Fx — проекции векторов ускорения и силы на ось X, а а и F — модули этих векторов.

Вам уже известно, что сила измеряется в ньютонах (Н).

Покажем, как с помощью второго закона Ньютона даётся определение единицы силы — 1 Н. Для этого выразим модуль силы:

В соответствии с этой формулой сила равна единице (1 Н), если масса равна единице (1 кг) и ускорение равно единице (1 м/с 2 ).

В СИ за единицу силы принимается сила, сообщающая телу массой 1 кг ускорение 1 м/с 2 в направлении действия силы.

Получим соотношение между единицами силы, массы и ускорения:

Вопросы

1. Что является причиной ускоренного движения тел?
2. Приведите примеры из жизни, свидетельствующие о том, что чем больше приложенная к телу сила, тем больше сообщаемое этой силой ускорение.
3. Используя рисунки 20 и 21, расскажите о ходе опытов и выводах, следующих из этих опытов.
4. Сформулируйте второй закон Ньютона. Какой математической формулой он выражается?
5. Что можно сказать о направлении вектора ускорения и вектора равнодействующей приложенных к телу сил?

Упражнение 11

2. Через 20 с после начала движения электровоз развил скорость 4 м/с. Найдите силу, сообщающую ускорение, если масса электровоза равна 184 т.

3. Два тела равной массы движутся с ускорениями 0,08 и 0,64 м/с 2 соответственно. Равны ли модули действующих на тела сил? Чему равна сила, действующая на второе тело, если на первое действует сила 1,2 Н?

4. С каким ускорением будет всплывать находящийся под водой мяч массой 0,5 кг, если действующая на него сила тяжести равна 5 Н, архимедова сила — 10 Н, а средняя сила сопротивления движению — 2 Н?

5. Баскетбольный мяч, пройдя сквозь кольцо и сетку, под действием силы тяжести сначала движется вниз с возрастающей скоростью, а после удара о пол — вверх с уменьшающейся скоростью. Как направлены векторы ускорения, скорости и перемещения мяча по отношению к силе тяжести при его движении вниз; вверх?

6. Тело движется прямолинейно с постоянным ускорением. Какая величина, характеризующая движение этого тела, всегда сона- правлена с равнодействующей приложенных к телу сил, а какие величины могут быть направлены противоположно равнодействующей?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *