Что изучает наука гистология в биологии

Гистология человека: конспект лекций для вузов

Что изучает наука гистология в биологии

Настоящим изданием продолжается серия «Конспект лекций. В помощь студенту», в которую входят лучшие конспекты лекций по дисциплинам, изучаемым в вузах. Материал приведен в соответствие с учебной программой курса «Гистология человека». Используя данную книгу при подготовке к сдаче экзамена, студенты смогут в предельно сжатые сроки систематизировать и конкретизировать знания, приобретенные в процессе изучения этой дисциплины; сосредоточить свое внимание на основных понятиях, их признаках и особенностях; сформулировать примерную структуру (план) ответов на возможные экзаменационные вопросы. Данная книга служит пособием для успешной сдачи экзаменов.

Оглавление

Приведённый ознакомительный фрагмент книги Гистология человека: конспект лекций для вузов предоставлен нашим книжным партнёром — компанией ЛитРес.

ЛЕКЦИЯ 1. Введение в курс гистологии

2. Объекты исследования гистологии

3. Приготовление гистологических препаратов

4. Методы исследования

5. Исторические этапы развития гистологии

1. Гистология наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Следовательно, гистология изучает один из уровней организации живой материи тканевой. Различают следующие иерархические уровни организации живой материи:

· структурно-функциональные единицы органов;

Гистология, как учебная дисциплина, включает в себя следующие разделы: цитологию, эмбриологию, общую гистологию (изучает строение и функции тканей), частную гистологию (изучает микроскопическое строение органов).

Основным объектом изучения гистологии является организм здорового человека и потому данная учебная дисциплина именуется как гистология человека.

Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей.

Гистология, как и анатомия, относится к морфологическим наукам, главной задачей которых является изучение структур живых систем. В отличие от анатомии, гистология изучает строение живой материи на микроскопическом и электронно-микроскопическом уровне. При этом, изучение строения различных структурных элементов проводится в настоящее время с учетом выполняемых ими функций. Такой подход к изучению структур живой материи называется гистофизиологическим, а гистология нередко именуется как гистофизиология. Кроме того, при изучении живой материи на клеточном, тканевом и органном уровнях рассматривается не только форма, размеры и расположение интересующих структур, но методом цито — и гистохимии нередко определяется и состав веществ, образующих эти структуры. Наконец, изучаемые структуры обычно рассматриваются с учетом их развития, как во внутриутробном (эмбриональном) периоде, так и на протяжении постэмбрионального онтогенеза. Именно с этим связана необходимость включения эмбриологии в курс гистологии.

Гистология, как любая наука, имеет свои объекты и методы их изучения. Непосредственными объектами изучения являются клетки, фрагменты тканей и органов, особым способом приготовленные для изучения их под микроскопом.

2. Объекты исследования подразделяются на:

· живые (клетки в капле крови, клетки в культуре и другие);

· мертвые или фиксированные, которые могут быть взяты как от живого организма (биопсия), так и от трупов.

В любом случае после взятия кусочков они подвергаются действию фиксирующих растворов или замораживанию. И в научных, и в учебных целях используются фиксированные объекты. Приготовленные определенным способом препараты, используемые для изучения под микроскопом, называются гистологическими препаратами.

Гистологический препарат может быть в виде:

· тонкого окрашенного среза органа или ткани;

· отпечатка на стекле с разлома органа;

· тонкого пленочного препарата.

Гистологический препарат любой формы должен отвечать следующим требованиям:

· сохранять прижизненное состояние структур;

· быть достаточно тонким и прозрачным для изучения его под микроскопом в проходящем свете;

· быть контрастным, то есть изучаемые структуры должны под микроскопом четко определяться;

· препараты для световой микроскопии должны долго сохраняться и использоваться для повторного изучения.

Эти требования достигаются при приготовлении препарата.

3. Выделяют следующие этапы приготовления гистологического препарата

Взятие материала (кусочка ткани или органа) для приготовления препарата. При этом учитываются следующие моменты: забор материала должен проводиться как можно раньше после смерти или забоя животного, а при возможности от живого объекта (биопсия), чтобы лучше сохранились структуры клетки, ткани или органа; забор кусочков должен производиться острым инструментом, чтобы не травмировать ткани; толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор мог проникнуть в толщу кусочка; обязательно производится маркировка кусочка (указывается наименование органа, номер животного или фамилия человека, дата забора и так далее).

Фиксация материала необходима для остановки обменных процессов и сохранения структур от распада. Фиксация достигается чаще всего погружением кусочка в фиксирующие жидкости, которые могут быть простыми спирты и формалин и сложными раствор Карнуа, фиксатор Цинкера и другие. Фиксатор вызывает денатурацию белка и тем самым приостанавливает обменные процессы и сохраняет структуры в их прижизненном состоянии. Фиксация может достигаться также замораживанием (охлаждением в струе СО2, жидким азотом и другие). Продолжительность фиксации подбирается опытным путем для каждой ткани или органа.

Заливка кусочков в уплотняющие среды (парафин, целлоидин, смолы) или замораживание для последующего изготовления тонких срезов.

Приготовление срезов на специальных приборах (микротоме или ультрамикротоме) с помощью специальных ножей. Срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной микроскопии — монтируются на специальные сеточки.

Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов удаляется уплотняющая среда (депарафинизация). Окраской достигается контрастность изучаемых структур. Красители подразделяются на основные, кислые и нейтральные. Наиболее широко используются основные красители (обычно гематоксилин) и кислые (эозин). Нередко используют сложные красители.

Просветление срезов (в ксилоле, толуоле), заключение в смолы (бальзам, полистерол), закрытие покровным стеклом.

После этих последовательно проведенных процедур препарат может изучаться под световым микроскопом.

Для целей электронной микроскопии в этапах приготовления препаратов имеются некоторые особенности, но общие принципы те же. Главное отличие заключается в том, что гистологический препарат для световой микроскопии может длительно храниться и многократно использоваться. Срезы для электронной микроскопии используются однократно. При этом вначале интересующие объекты препарата фотографируются, а изучение структур производится уже на электронограммах.

Из тканей жидкой консистенции (кровь, костный мозг и другие) изготавливаются препараты в виде мазка на предметном стекле, которые также фиксируются, окрашиваются, а затем изучаются.

Из ломких паренхиматозных органов (печень, почка и другие) изготавливаются препараты в виде отпечатка органа: после разлома или разрыва органа, к месту разлома органа прикладывается предметное стекло, на которое приклеиваются некоторые свободные клетки. Затем препарат фиксируется, окрашивается и изучается.

Наконец, из некоторых органов (брыжейка, мягкая мозговая оболочка) или из рыхлой волокнистой соединительной ткани изготавливаются пленочные препараты путем растягивания или раздавливания между двумя стеклами, также с последующей фиксацией, окраской и заливкой в смолы.

4. Основным методом исследования биологических объектов, используемым в гистологии является микроскопирование, т. е. изучение гистологических препаратов по микроскопом. Микроскопия может быть самостоятельным методом изучения, но в последнее время она обычно сочетается с другими методами (гистохимии, гисторадиографии и другие). Следует помнить, что для микроскопии используются разные конструкции микроскопов, позволяющие изучить разные параметры изучаемых объектов. Различают следующие виды микроскопии:

· световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

· ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

· люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

· фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;

· поляризационная микроскопия для изучения, главным образом, волокнистых структур;

· микроскопия в темном поле для изучения живых объектов;

· микроскопия в падающем свете для изучения толстых объектов;

· электронная микроскопия (разрешающая способность до 0,1–0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.

Гистохимические и цитохимические методы позволяет определять состав химических веществ и даже их количество в изучаемых структурах. Метод основан на проведении химических реакций с используемым реактивом и химическими веществами, находящимися в субстрате, с образованием продукта реакции (контрастного или флюоресцентного), который затем определяется при световой или люминесцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод используется чаще всего в экспериментах на животных.

Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2-х до 150 тыс.) и получают интересующие фракции, которые затем изучают различными методами.

Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах.

Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов.

Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Единицы измерения, используемые в гистологии

Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм.

5. В истории развития гистологии условно выделяют три периода:

Домикроскопический период (с IV в. до н. э. по 1665 г.) связан с именами Аристотеля, Галена, Авиценны, Везалия, Фаллопия и характеризуется попытками выделения в организме животных и человека неоднородных тканей (твердых, мягких, жидких и так далее) и использованием методов анатомической препаровки.

Микроскопический период (с 1665 г. по 1950 г.). Начало периода связывают с именем английского физика Роберта Гука, который, во-первых, усовершенствовал микроскоп (полагают, что первые микроскопы были изобретены в самом начале XVII в.), во-вторых, использовал его для систематического исследования различных, в том числе биологических объектов и опубликовал результаты этих наблюдений в 1665 г. в книге «Микрография», в-третьих, впервые ввел термин «клетка» («целлюля»). В дальнейшем осуществлялось непрерывное усовершенствование микроскопов и все более широкое использование их для изучения биологических тканей и органов.

Особое внимание уделялось изучению строения клетки. Ян Пуркинье описал наличие в животных клетках «протоплазмы» (цитоплазмы) и ядра, а несколько позже Р. Броун подтвердил наличие ядра и в большинстве животных клеток. Ботаник М. Шлейден заинтересовался происхождением клетокцитокенезисом. Результаты этих исследований позволили Т. Швану, на основании их сообщений, сформулировать клеточную теорию (1838–1839 гг.) в виде трех постулатов:

· все растительные и животные организмы состоят из клеток;

· все клетки развиваются по общему принципу из цитобластемы;

· каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.

Однако вскоре Р. Вирхов (1858 г.) уточнил, что развитие клеток осуществляется путем деления исходной клетки (любая клетка из клетки). Разработанные Т. Шваном положения, клеточной теории актуальны до настоящего времени, хотя формулируется по-иному.

Современные положения клеточной теории:

· клетка является наименьшей единицей живого;

· клетки животных организмов сходны по своему строению;

· размножение клеток происходит путем деления исходной клетки;

· многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в системы тканей и органов, связанные между собой клеточными, гуморальными и нервными формами регуляции.

· Дальнейшее совершенствование микроскопов, особенно создание ахроматических объективов, позволило выявить в клетках более мелкие структуры:

· клеточный центрГертвиг, 1875 г.;

· сетчатый аппарат или пластинчатый комплекс Гольджи, 1898 г.;

· митохондрии Бенда, 1898 г.

Современный этап развития гистологии начинается с 1950 г. с момента начала использования электронного микроскопа для изучения биологических объектов, хотя электронный микроскоп был изобретен раньше (Е. Руска, М. Кноль, 1931 г.). Однако для современного этапа развития гистологии характерно внедрение не только электронного микроскопа, но и других методов: цито — и гистохимии, гисторадиографии и других вышеперечисленных современных методов. При этом обычно используется комплекс разнообразных методик, позволяющий составить не только качественное представление об изучаемых структурах, но и получить точные количественные характеристики. Особенно широко в настоящее время используются различные морфометрические методики, в том числе автоматизированные системы обработки полученной информации с использованием компьютеров.

Источник

ГИСТОЛОГИЯ

ГИСТОЛОГИЯ (греч, histos столб, ткань + logos учение) — наука о строении, функциях, развитии и взаимодействиях тканей, составляющих организм многоклеточных животных и человека. Предмет изучения гистологии — ткани, которые представляют собой системы клеток и их неклеточных производных, специализированы на выполнении определенных частных функций и являются приспособительными структурами целостного организма. По отношению к органам ткани выступают как строительные материалы и в связи с этим не индивидуализованы, причем одна и та же ткань, хотя и в разных ее органоспецифических формах, может входить в состав различных органов.

Макроскопическое изучение тканей дает очень немногое для их познания (сведения о цвете, консистенции, отношении к хим. реактивам, перевариванию и т. д.). Основным методом изучения тканей является микроскопия (световая, электронная и др.). Для изучения структуры и других свойств тканей под микроскопом используют весьма разнообразные и сложные методы их обработки (см. Гистологические методы исследования). Живые клетки в ткани обычно изучаются с применением витального окрашивания (см. Витальная окраска), чаще всего в условиях культивирования in Vitro, с помощью фазового контраста, Микрокиносъемки и т. д. Основными этапами обработки тканей для изготовления постоянных препаратов, пригодных для изучения на протяжении многих десятков лет, являются фиксация теми или иными, подчас сложного состава, фиксирующими или консервирующими жидкостями, заливка в парафин, целлоидин или иные плотные среды, изготовление тонких (1—10—50 мкм) срезов на микротоме, окраска освобожденных от парафина срезов одним или несколькими красителями для контрастного выявления, по-разному окрашивающихся клеточных и тканевых структур, заключение обезвоженных срезов в канадский бальзам или иные прозрачные смолы, накрытие среза покровным стеклом. Для изготовления препаратов, подлежащих изучению в электронном микроскопе, применяются специальные методы фиксации, заливки, получения сверхтонких срезов на ультрамикротоме с помощью стеклянных ножей, контрастирования срезов (см. Электронная микроскопия). Все более широкое применение находят методы цито- и гистохимии. С их помощью удается определять точную локализацию и количество различных веществ (аминокислот, белков, ферментов, нуклеиновых к-т, липидов, углеводов, витаминов, неорганических соединений) в составе определенных клеточных структур и в межклеточном веществе тканей. Большое распространение получил метод авторадиографии (см.), основанный на введении в организм меченых радиоактивными изотопами предшественников тех или иных веществ с последующим изучением распределения треков (следовых радиоавтографов) в структурах, включивших эти вещества.

Со второй половины 20 в. в Г. начали использоваться и специальные методы световой микроскопии — микроскопию темнопольную, ультрафиолетовую, люминесцентную, интерференционную, фазово-контрастную и т. д. Кроме основного, описательного сравнительно-морфол., метода исследования, уже с конца 19 в. в гистологии получили развитие экспериментальные методы: нанесение повреждений с последующим изучением восстановительных процессов в тканях, трансплантация тканей, культивирование тканей in vitro на искусственной питательной среде. Наряду с высеванием на среду кусочков тканей — эксплантатов, клетки которых, размножаясь, образуют по периферии центрального кусочка характерную для каждого типа тканей зону роста, стали применять трипсинизацию тканевой культуры, что приводит к образованию взвеси клеток, клонирование клеток, т. е. получение ряда последовательных генераций от одной выделенной из трипсинизированной культуры тканевой клетки и др.

В зависимости от объекта изучения Г. подразделяют на нормальную, изучающую структуру и свойства неизмененных тканей здорового организма, и патологическую (патогистологию), исследующую изменения тканей при заболеваниях и повреждениях. Патогистология обычно рассматривается как раздел патологической анатомии (см.), хотя ряд ее разделов затрагивает вопросы, общие с нормальной Г. Нормальная Г. состоит из Г. человека, имеющей вместе с Г. некоторых лабораторных животных, используемых в мед. экспериментах, наиболее близкое отношение к ряду разделов медицины, Г. домашних животных, связанной с запросами зоотехнии и ветеринарии, и сравнительной Г. животных — наиболее обширной области, тесно связанной с различными разделами зоологии, сравнительной анатомии (см.), эволюционной теории (см. Эволюционное учение) и другими общебиол. дисциплинами и проблемами.

В Г. человека и животных обычно различают общую Г., изучающую ткани, их классификацию, родственные отношения, восстановительные возможности, и частную Г., иногда неудачно именуемую «микроскопической анатомией», исследующую частные особенности и взаимоотношения тканей в составе тех или иных органов. К концу 19 в. в силу специфики объекта и методов исследования выделилась нейрогистология. Важным разделом Г., связанным с рядом разделов физиологии, биохимии и клин, дисциплин, является учение о крови и кроветворении, вошедшее в состав гематологии (см.).

Являясь частью морфологии, Г. среди морфол, дисциплин теснее всего связана с анатомией (см.), цитологией (см.) и эмбриологией (см.). Если цитология изучает гл. обр. общие свойства клетки как основной единицы строения, функционирования и развития одноклеточных и многоклеточных организмов и в меньшей степени специализацию клеток в составе различных тканей, то Г. исследует приспособительные структуры организма на уровне тканевых систем. Тканевая специализация клеток, включая выработку межклеточных веществ (см.) и межклеточные взаимодействия в составе тканей составляют ее центральную проблему. По сравнению с цитологией Г. в меньшей степени аналитическая и в большей синтетическая наука. Связь Г. с эмбриологией выражается в том, что Г. изучает не только готовые, дифференцированные ткани сформированного организма, но и становление тканевых структур в ходе развития зародыша — эмбриональный гистогенез (см.).

Современная Г. в значительной степени перестала быть чисто морфол. наукой. Она исследует не только структуру тканей (гисто-морфология), но и их функции (гистофизиология), хим. состав тканей и локализацию в тканевых структурах различных хим. веществ (гистохимия), что обеспечивает тесные связи ее с физиологией и биохимией, поэтому не случайно получил распространение термин «биология тканей», отражающий эти сдвиги в содержании Г. В изучении факторов, обусловливающих дифференцировку, т. е. функциональную и структурную специализацию клеток и тканей, все большее значение приобретают методы цитогенетики (см.) и молекулярной генетики (см.) и в особенности экспериментальные методы, с помощью которых исследуют строительную деятельность тканей в процессах физиол, и репаративной регенерации, трансплантации, де- и реиннервации, пострадиационной нормализации и т. д. Г. наравне с анатомией, физиологией, биохимией и генетикой составляют теоретический фундамент медицины. В качестве примера непосредственной связи Г. с проблемами теоретической и клин, медицины можно назвать учение о клеточном составе крови и кроветворении, без знания к-рого невозможна разработка проблемы лейкозов, анемий, элементарная диагностика многих заболеваний; учение о соединительной ткани и о развитии ее межклеточного вещества как одно из теоретических основ изучения ревматизма и других коллагенозов; сведения об иммунокомпетентных клетках (лимфоцитах и плазматических клетках), а также о микро- и макрофагах крови и соединительной ткани как морфол. основе учения об иммунитете; учение о физиол, и посттравматической регенерации и др. С конца 40-х годов 20 в. большое развитие получила радиационная Г., или радиогистология, изучающая поражения тканей различными видами ионизирующей радиации и пострадиационные восстановительные процессы в них.

Для патол, анатомии и самых различных разделов клин, медицины важен учет возрастных изменений тканей и органов — особенностей строений и функций тканей недоношенных и доношенных новорожденных, детей разного возраста, изменений, связанных со старением (возрастная Г.).

Велика роль Г. в разработке проблем трансплантологии, космической медицины, экспериментального моделирования болезней и т. д.

Для гистологии характерна теснейшая связь с развитием микроскопической техники и микроскопических исследований (см. Микроскопические методы исследования), учения о клетке и созданием клеточной теории. Отдельные факты, относящиеся к микроскопическому строению тех или иных органов, напр, открытие почечных и селезеночных телец итал. ученым М. Мальпиги в 1675—1679 гг., установление единства нефрона, расшифровка значения почечного тельца как сосудистого клубочка и открытие капсулы почечного тельца московским морфологом А. М. Шумлянским (1782), еще не привели к созданию Г. как самостоятельной науки. Первые попытки систематизации тканей принадлежат франц. анатому и физиологу М. Биша. В своей книге «Общая анатомия» (1801) все многообразие известных в то время структур организма он подразделил на 21 «систему». Однако наряду с действительно тканевыми «системами» (хрящевой, костной и др.) в этот перечень попали и такие «системы», как артериальная, венозная, волосяная, т. е. структуры явно органного характера. По-видимому, у М. Биша не было ясности в вопросе о различиях между органами и тканями. Другая ранняя попытка создания свода знаний о материалах, составляющих органы, принадлежит петербургскому анатому и физиологу П. А. Загорскому («Сокращенная анатомия или руководство к познанию строения человеческого тела в пользу обучающимся врачебной науке», 1802). В названных трудах нашли отражение представления о тканях, основанные гл. обр. на их макроскопическом изучении (домикроскопический период развития Г.), хотя во времена М. Биша и П. А. Загорского некоторые исследователи уже применяли микроскоп. Однако науке о тканях не хватало руководящей идеи. Такой идеей явилась клеточная теория (см.), обоснованная нем. физиологом и гистологом Т. Шванном (1838, 1839). Именно в классической книге «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839) он показал, что все гистол, структуры как в животном, так и в растительном царствах представляют собой видоизменение клеток или продукт их жизнедеятельности. В связи с этим была предпринята попытка подразделения всего многообразия растительных и животных тканей по типу превращений клеток, т. е. на основе гистогенетического принципа.

Что изучает наука гистология в биологии

Что изучает наука гистология в биологии

Большую роль в развитии Г. сыграли исследования нем. эмбриолога и гистолога Р. Ремака. Он показал, что новые клетки в составе тканей появляются только в результате деления предшествующих (1855), что уже зародышевые листки (см.) отличаются друг от друга по форме, структуре и взаиморасположению своих клеток, а в ходе дальнейшего развития каждый из них дает начало вполне определенным тканям и т. д. Крупный вклад в Г. животных и человека внесла пражская школа Я. Пуркинье. В частности, Я. Пуркинье первым увидел нервные клетки, описал волокна проводящей системы сердца и др. Нем. гистологи Р. Келликер и Лейдиг (F. Leydig) в 50—60-е годы 19 в. создали первую морфофизиол. классификацию тканей, не потерявшую своего практического значения, подразделив все многообразие тканей на 4 обширные группы: эпителиальные, соединительные (в широком смысле слова, т. е. включая кровь и лимфу, хрящевую и костную ткань), мышечные и нервную. Однако эта классификация строилась без учета источников развития тканей, т. к. было широко распространено представление, будто каждая ткань способна развиваться из любого зародышевого листка или зачатка, а каждый зародышевый листок в свою очередь может дать начало любым тканям (Р. Келликер, О. Гертвиг). Это гармонировало с учением нем. патолога Р. Вирхова о метаплазии, т. е. о широких возможностях взаимопревращения самых различных тканей, особенно в патол, условиях.

Однако к концу 19 в. начали накапливаться данные, свидетельствующие о глубокой специфичности тканей у высокоорганизованных животных и человека, возникающей в ходе онтогенеза и детерминированной филогенетически. По этой причине нем. зоолог-дарвинист Геккель (Е. Haeckel, 1885) и франц. патогистолог Бар (L. Bard, 1886) предложили строить классификацию тканей на основе генетического принципа.

В России в начале второй половины 19 в. наиболее интенсивно Г. развивалась в Казани, где сформировалась казанская школа нейро-гистологов — Ф. В. Овсянников, К. А. Арнштейн, И. М. Догель, А. С. Догель и др., Москве — основоположником московской школы был известный физиолог и гистолог А. И. Бабухин, и Петербурге. В Петербурге параллельно развивались два направления Г. В Петербургском ун-те изучалась гл. обр. сравнительная Г. в тесной связи с проблемами физиологии и зоологии; представителями этого направления являлись Ф. В. Овсянников, А. О. Ковалевский и В. М. Шимкевич (1858—1923). В Медико-хирургической академии разработка Г. была в большей степени ориентирована на мед. проблемы, что осуществили H. М. Якубович, Ф. Н. Заварыкин, М. Д. Лавдовский. Первое направление наиболее ярко представлено воспитанником казанской нейрогистол. школы А. С. Догелем, прославившим отечественную нейрогистологию сравнительными исследованиями сетчатки глаза у различных позвоночных, анализом нейронного состава спинальных, и в особенности вегетативных, ганглиев. Кафедра гистологии ВМА под руководством А. А. Максимова разрабатывала проблемы экспериментальной Г. крови и соединительной ткани, вопросы кроветворения; А. А. Максимов обосновал унитарную теорию кроветворения.

На Украине важные исследования в 19 в. проведены В. А. Бецом (разработка учения о цитоархитектонике коры мозга, открытие гигантских пирамидных клеток) и Н. А. Хржонщевским (вопросы гистофизиологии).

В Пермском ун-те под руководством А. А. Заварзина сложилась школа, в к-рую входили Е. С. Данини (1894—1954), Ф. М. Лазаренко (1888—1953), Ю. А. Орлов (1893— 1966), развивавшая нейрогистол. исследования; ею же выполнены первые экспериментальные работы по проблеме межтканевых корреляций (коррелятивные взаимоотношения между эпителиями и соединительной тканью и т. д.). Впоследствии в ВМА и ВИЭМ А. А. Заварзин возглавил сравнительно-гистологического исследования, изучение регенеративных возможностей тканей. На основе накопленных фактов А. А. Заварзин развил теорию параллельных рядов эволюции тканевых структур, теорию камбиальности тканей, учение о межтканевых коррелятивных взаимодействиях и др. Благодаря трудам А. А. Заварзина и его школы (Ф. М. Лазаренко, Е. С. Данини, А. А. Браун, С. И. Щелкунов, Л. Н. Жинкин, 3. И. Крюкова, Г. А. Невмывака, В. А. Цвиленева и др.) впервые именно в нашей стране сложилось эволюционное направление в изучении тканей, а эволюционный подход стал все шире распространяться на Г. в целом. За монографию «Очерки по эволюционной гистологии нервной системы» (1941) А. А. Заварзин в 1942 г. удостоен Государственной премии.

Крупный вклад в разработку проблем эволюционной Г. внесла школа Н. Г. Хлопина (В. Е. Цымбал, Я. А. Винников, В. П. Михайлов, Ш. Д. Галустян, Н. А. Колесникова и др.)? изучившая преимущественно методом эксплантации свойства почти всех тканей человека и позвоночных; была показана глубокая специфичность и устойчивость исходных свойств тканей при изменяющихся условиях существования. А. В, Румянцев и его ученики А. Н. Студитский, А. Э. Фриденштейн ввели в эволюционную Г. принципы эволюционной морфологии А. Н. Северцова. Т. о., получило более широкое экспериментальное обоснование учение о тканевой детерминации (см.). В противовес теории параллелизмов, делающей упор на возникновение сходства (параллелизмов и конвергенций) в ходе эволюции тканей даже у неродственных животных, Н. Г. Хлопин обосновал теорию дивергентной эволюции тканей, согласно к-рой ткани, как и целые организмы, эволюируют в соответствии с эволюционной теорией Ч. Дарвина, прежде всего дивергентно, тогда как параллелизмы и конвергенции представляют частные следствия дивергентной эволюции при сходных условиях существования и функционирования. Особенно большое значение для медицины имеет разработанная Н. Г. Хлопиным генетическая (филогенетическая или гистогенетическая) система тканей, основанная на учете источников и путей происхождения тканей, а также всей совокупности их свойств и изменений в условиях нормы, патологии и эксперимента. Эта классификация, а именно разделение всего многообразия тканей позвоночных на эпидермальный, энтеродермальный, глионейральный, целонефродермальный типы с выделением в качестве самостоятельных типов также соматических мышечных тканей и производных мезенхимы нашла особенно плодотворное отражение в онкологии, в учении о воспалительных разрастаниях эпителиев, в учении об источниках регенерации тканей и т. д.

Трудами Н. Г., Хлопина и его школы было показано, что у высокоорганизованных животных и человека метаплазия (см.) возможна только в пределах того или иного тканевого типа, межтиповой метаплазии не происходит ни при каких условиях. За монографию «Общебиологические и экспериментальные основы гистологии» (1946) Н. Г. Хлопин в 1947 г. удостоен Государственной премии.

В вопросе об исторически обусловленной детерминированности свойств тканей между школами А. А. Заварзина и Н. Г. Хлопина существовало полное единство взглядов. Представителями обоих направлений были предприняты попытки синтеза теории параллелизмов и теории дивергентной эволюции тканей (А. А. Браун и В. П. Михайлов, 1965; В. П. Михайлов, 1967), поскольку сходства и различия не существуют в природе раздельно: общее проявляется в единичном и особенном.

Для более широкой постановки проблем эволюционной Г. многое дало привлечение наследия А. Н. Северцова: его учение о главных направлениях эволюционного процесса (ароморфозы, идиоадаптации), о типах, или способах, эволюционных преобразований структур и функций (принципы интоксификации, смены, субституции функций), теории корреляций, теории филэмориогенеза, в т. ч. учения о гистогенетических рекапитуляциях и др. (А. Н. Северцов, 1939; А. Г. Кнорре, 1946, 1974, А. Н. Студитский, 1947, 1948; А. В. Румянцев, 1958).

В трудах Н. Л. Гербильского и его школы (1956, 1972) эволюционное направление в Г. было обогащено эколого-физиол. подходом, который нашел дальнейшее развитие в исследованиях ученика Н. Л. Гербильского — А. Л. Поленова по проблеме гипоталамической нейросекреции. Этим же вопросам посвящены работы А. А. Войткевича (1967), Б. В. Алешина (1970). С методическим перевооружением цитологии и Г. в связи с широким применением методов цито- и гистохимии, авторадиографии, электронной микроскопии открылись новые возможности изучения закономерностей эволюции клеток и тканей. В этом отношении демонстративны исследования Я. А. Винникова и его сотрудников по цитохим. и электронно-микроскопическому исследованию органов чувств в ряду позвоночных и у некоторых беспозвоночных (1961, 1970, 1971 и др.), получивших широкое признание.

Хотя проблемы эволюционных изменений клеток и тканей стали разрабатываться и за рубежом [Эндрю (W. Andrew), 1959; Уиллмер (E. Willmer), 1960; Маргулис (L. Margulis), 1970 и др.], первые важные эволюционные обобщения в Г. являются всецело достижением отечественной науки, что было обусловлено материалистическим учением Дарвина об эволюции органического мира. Благоприятствовали этому материалистические и эволюционистские традиции дореволюционной отечественной биологии. Так, еще А. И. Бабухин (1869) впервые исследовал гистогенез электрических органов у скатов и показал возникновение у них электрических пластинок из видоизмененных скелетномышечных волокон. Истолковав этот факт как свидетельство филогенетического происхождения этих структур из скелетно-мышечной ткани, он устранил отмеченное еще Дарвиным затруднение для теории естественного отбора. И. И. Мечников, открыв явление фагоцитоза (1883) и исследовав эмбриональное развитие большого числа видов медуз (1886), построил наиболее убедительную теорию происхождения многоклеточных животных (теория фагоцителлы), являющуюся одновременно и теорией происхождения первых тканей — кинобласта и фагоцитобласта. В. М. Шимкевич (1908) разработал теорию метеоризма, т. е. смещения границ между эмбриональными зачатками и соответственно между их тканевыми производными. Эта теория сыграла важную роль в преодолении антиэволюционных представлений о широких возможностях метаплазии. Однако первые широкие обобщения, отразившие специфические закономерности изменений тканей в эволюции организмов, были сделаны в советское время (30-е годы).

Главной проблемой нейрогистологии с середины 19 до середины 20 в. оставалось выяснение взаимоотношений между нервными клетками в составе нервной системы. Теория синцитиальных связей между нервными клетками и непрерывного перехода нейрофибрилл из одних нейронов в другие по их отросткам, к-рую, напр., отстаивали Штер мл. (Ph. Stohr) и др. в Германии, Буке (J. Boeke) в Голландии, была, в конечном счете, опровергнута. Восторжествовало представление, что нервная система состоит из индивидуальных нейронов, контактирующих друг с другом в специализированных участках клеточных тел, и отростков-синапсов, образующих многочленные цепи, по к-рым и осуществляется передача нервных импульсов на любые расстояния в пределах организма. Наиболее крупный вклад в утверждение нейронного принципа строения, развития и функционирования нервной системы внесли лауреаты Нобелевской премии К. Гольджи, С. Рамон-и-Кахаль, разработавшие методику импрегнации нервных элементов солями серебра, А. С. Догель, предложивший в 1902 г. методику прижизненного окрашивания нервных клеток со всеми их отростками метиленовым синим с последующей фиксацией молибденовокислым аммонием, В. Гис, доказавший, что каждый нейрон происходит из отдельной эмбриональной клетки — нейробласта. Амер. эмбриолог-экспериментатор Харрисон (R. Harrison), впервые с успехом применивший метод тканевых культур in vitro (1907), проследил прижизненно образование нейробластами отростков. Решающее поражение теории синцитиального строения нервной системы и «фибриллярной непрерывности» было нанесено экспериментами советского нейрогистолога Б. И. Лаврентьева, показавшими, что дегенерация перерезанных отростков нервных клеток не распространяется на отростки и тела тех нейронов, с к-рыми эти нейроны синаптически контактируют. Исследования Б. И. Лаврентьева отмечены Государственной премией (1941). Завершение спору принесла электронная микроскопия, показавшая, что в местах синаптических контактов между нейронами имеется синаптическая щель [де Робертис (Е. de Robertis, 1956)].

Из достижений нейрогистологии важно отметить также окончательное доказательство рецепторной природы равноотростчатых нейроцитов (клеток II типа по Догелю) в вегетативных ганглиях и, т. о., существования местных рефлекторных дуг в в. ц. с. (школа Н. Г. Колосова — Т. С. Иванова, А. А. Милохин); углубленное изучение трофической функции нервной системы и нейроэндокринных корреляций (Т. А. Григорьева, Ю. К. Елецкий, О. В. Волкова, В. Н. Швалев); широкое обобщение данных о нормальной и патол, морфологии нейрона (Ю. М. Жаботинский) и т. д. Одной из новых и важных глав нейроморфологии является учение о гипоталамо-гипофизарной нейросекреторной системы, к-рую создали Шарреры (E. Scharrer, В. Scharrer), Баргманн (W. Bargmann), А. А. Войткевич, А. Л. Поленов, Б. В. Алешин и др.

В области изучения мышечных тканей большее значение имеют исследования их гистогенеза (3. С. Кацнельсон), регенерации (А. А. Заварзин, А. Н. Студитский), культивирования in vitro (H. Г. Хлопин) и субмикроскопического строения поперечнополосатой мышечной ткани скелетного типа [Беннетт (H. S. Bennett), Хаксли (H. Е. Huxley)]. За комплекс исследований мышечной ткани А. Н. Студитскому и А. Р. Стригановой присуждена Государственная премия (1951).

Изучение тканей внутренней среды направлено гл. обр. на выяснение клеточного состава крови и различных видов соединительной ткани, генетических взаимоотношений их клеточных элементов и способа образования межклеточного вещества. Со второй половины 20 в. изучаются ультраструктуры коллагенных фибрилл, гистофизиология и гистохимия соединительной ткани, выясняются пути развития «стволовых» (родоначальных) клеток в условиях разнообразных форм эксперимента [А. Поликар и его школа, Г. К. Хрущов (1897—1962) и ученики, В. Г. Елисеев и ученики, А. Я. Фриденштейн, Б. Б. Фукс, Н. Г. Хрущов]. Сравнительно-гистол. изучение крови, процессов кроветворения представлено работами И. М. Пестовой, а на электронномикроскопическом уровне — К. А. Зуфарова, Д. X. Хамидова и др. Обоснованию тканевой специфичности эндотелиальной выстилки кровеносных и лимф, сосудов посвящены экспериментальные исследования школы Н. Г. Хлопина— Н. А. Колесниковой, Н. А. Шевченко, А. Д. Смирнова и др.

В изучение эпителиальных тканей наиболее крупный вклад внесен школой Н. Г. Хлопина — исследование реакции различных эпителиев в условиях тканевых культур, при регенерации, опухолевом росте, разработка гистогенетической классификации; С. И. ГЦ елку новым — гистогенез, регенерация; Ф. М. Лазаренко — культивирование in vivo, 3. С. Кацнельсоном — регенерация, сравнительная Г.; М. Г. Шубичем с сотрудниками — гистохимия эпителиев кожного и кишечного типов в ряду позвоночных и др.

Закономерности развития тканей в эмбриогенезе разработаны в исследованиях А. Г. Кнорре, JI. И. Фалина, Ю. Н. Шаповалова и др. Специфику тканей провизорных органов, их ускоренное и сокращенное развитие выявили П. П. Иванов, М. Я. Субботин и др. А. А. Заварзин, Хольтфретер (J. Holtfreter), Вольфф (E. Wolff) глубоко изучили межтканевые корреляции.

За рубежом (в США, Японии и ряде других стран) Г. до середины 20 в. развивалась в основном теми путями, которые наметились в европейской и отечественной науке. Однако с появлением электронного микроскопа центром исследований стала ультрамикроскопическая структура клетки и других тканевых элементов. Это нашло отражение в трудах де Робертиса, Фоситта (D. W. Fawcett), Робертсона (J. D. Robertson), Беннетта, Пейли (S. L. Palay), Портера (К. R. Porter), Пелейда (G. E. Palade), Шёстранда (F. S. Sjostrand), Энгстрема (H. Engstrom) и др. Электронная микроскопия внесла принципиально новые данные о клеточной структуре волокон сердечной мышцы, строении миофибрилл в волокнах скелетных мышц, межнейронных синапсов, благодаря ей открыты мышечные сателлиты и т. д.

Современная гистология характеризуется разработкой новых проблем: гистохим, специфики тканевых и клеточных структур [Ж. Браше, Пирс (E. Pearse), В. В. Португалова Б. Б. Фукс, М. Г. Шубич]; межклеточных контактов как одного из факторов тканевой интеграции клеток (Ю. М. Васильев), изменений тканевых структур при перегрузках, к-рым подвергается организм в космосе (В. В. Португалов, Ю. И. Афанасьев, Ю. Н. Копаев и др.).

Для понимания одной из центральных проблем Г. — факторов, обусловливающих тканевую специализацию клетки,— большое значение имеют достижения молекулярной генетики и биохимии, в частности установление матричной роли нуклеиновых к-т в синтезе белков, структуры молекул ДНК и РНК и расшифровка генетического кода (Дж. Уотсон и Ф. Крик, 1953) и выяснение механизмов репрессии и дерепрессии генов [Ф. Жакоб и Моно (J. Monod), 1961]. В свете этих открытий специализация тканевой клетки на синтезе определенных тканеспецифичных белков, лежащая в основе морфол, проявлений дифференцировки, представляется как результат дерепрессированного состояния соответствующих генов при одновременном репрессированном состоянии генов, ответственных за синтез других, не свойственных данной ткани белков. Т. о., тканевая детерминация пропс-ходит на уровне репрессии и дерепрессии генов, а также синтеза информационной РНК, ответственной за синтез тканеспецифического белка, а дифференцировка в собственном смысле — на уровне синтеза тканеспецифического белка (или белков) и возникновения соответствующих специфических тканевых структур. Эти изменения ядерного аппарата клетки, связанные с ее детерминацией и дифференцировкой, являются эпигеномными, т. е. не изменяют генотипа клетки и организма. Принципиальная обратимость эпигеномных изменений (эпигеномной «наследственности» и изменчивости) доказана методом пересадки ядер специализированных тканевых клеток в энуклеированную, т. е. лишенную тем или иным способом собственного ядра, яйцеклетку, что осуществили Бриггс и Кинг (R. Briggs, Т. J. King, 1954), Гердон (J. Gurdon, 1964), Л. А. Никитина (1967). В этих случаях диплоидное ядро тканевой клетки берет на себя роль диплоидного ядра зиготы и обеспечивает всю полноту наследственных свойств развивающегося из яйца организма со всеми его клетками и тканями; т. о., работа ядерного аппарата тканевых клеток контролируется внешними по отношению к ядру факторами — ядерно-цитоплазматическими и межклеточными взаимодействиями, вокругклеточной средой и т. д. Овладение этими факторами, контролирующими тканевую дифференцировку, и является одной из очередных задач Г. Это относится как к нормальному эмбриональному и постнатальному гистогенезу, так и к восстановительному, а также к гистогенезу в условиях трансплантации, опухолевого роста и т. д.

В СССР, большинстве европейских стран и в США проблемы Г. разрабатываются гл. обр. на кафедрах анатомии ун-тов и в лабораториях научно-исследовательских центров. В мед. ин-тах СССР существуют самостоятельные кафедры Г. с эмбриологией. Ряд научно-исследовательских учреждений (Ин-т эволюционной морфологии и экологии животных им. А. Н. Северцова АН СССР, Ин-т биологии развития АН СССР, Ин-т морфологии человека АМН СССР, Ин-т экспериментальной медицины АМН СССР и др.) имеет крупные гистол, лаборатории.

Во многих странах функционируют научные общества анатомов, в которые входят и гистологи. Самым крупным является Всесоюзное научное общество анатомов, гистологов и эмбриологов; его структура и деятельность, периодические издания — см. Анатомия.

Основные зарубежные периодические издания по Г.: Acta anatomica, American Journal of Anatomy, Archiv fur mikroskopische Anatomie, Archives d’anatomie microscopique et de morphologie, Archivos de histologia normal у patologica, Experimental Cell Researh, Zeitschrift fiir mikroskopische anatomische Forschung и др.

На IX международном конгрессе анатомов в Ленинграде (1970) на основе анатомической номенклатуры выработана и утверждена международная Номенклатура по гистологии (LNH) и эмбриологии (LNE). Русский вариант этих номенклатур (см. Гистологическая номенклатура, Эмбриологическая номенклатура), подготовленный советскими морфологами, утвержден 8-м Всесоюзным съездом анатомов, гистологов и эмбриологов (Ташкент, 1974).

В СССР проводятся всесоюзные гистологические конференции, первая состоялась в Москве (1934); всесоюзными были и конференции памяти А. А. Заварзина (Ленинград), памяти Б. И. Лаврентьева и В. Г. Елисеева (Москва), конференция по изучению соединительной ткани (Новосибирск) и др.

Преподавание Г. в СССР осуществляется в мед. и вет. ин-тах на кафедрах гистологии и эмбриологии; на биол, ф-тах ун-тов — чаще на совместных кафедрах цитологии, гистологии и анатомии, иногда на кафедрах зоологии; в педагогических институтах — на кафедрах анатомии и физиологии. В мед. ин-тах преподавание Г. наиболее стандартизировано, осуществляется по единой программе, утверждаемой М3 СССР. Лекции и практические занятия проводятся в течение двух семестров. На практических занятиях студенты с помощью светового микроскопа изучают определенный набор препаратов, овладевают приемами микроскопирования, знакомятся с элементами гистологической техники и отдельными электронограммами. В 30— 50-е годы 20 в. основным руководством был учебник А. А. Заварзина (7 изданий), с 1963 г.— учебник под ред. В. Г. Елисеева и Ю. И. Афанасьева (2 издания). По окончании курса сдается экзамен как по диагностике и анализу препаратов, так и по теоретическим вопросам.

С 1968 г. в некоторых мед. ин-тах (1-й Московский, Ленинградский педиатрический и др.) кафедры гистологии и эмбриологии проводят циклы повышения квалификации преподавателей по этим дисциплинам.

История — Барон М. А. и Португалов В. В. Гистология, в кн.: 50 лет советского здравоохранения, под ред. Б. В. Петровского, с. 245, М., 1967; Гинзбург В. В., Кнорре А. Г. и Куприянов В. В. Анатомия, гистология и эмбриология в Петербурге — Петрограде — Ленинграде, Краткий очерк, Л., 1957, библиогр.; Кацнельсон 3. С. Клеточная теория в ее историческом развитии, Л., 1963, библиогр.; Кнорре А. Г. Эволюционная гистология и пути ее развития в СССР, Арх. анат., гистол, и эмбриол., т. 53, в. 9, с. 22, 1967, библиогр.; Кнорре А. Г., Куприянов В. В. и Михайлов В. П. Морфология в Петербурге— Ленинграде, М., 1970, библиогр.; Колосов Н. Г. 100-летие старейшей русской Казанской нейрогистологической школы, Арх. анат., гистол, и эмбриол., т. 47, в. 12, с. 99, 1964, библиогр.; Михайлов В.П. К истории гистологии в Казанском университете во второй половине XIX века, там же, с. 110, библиогр.; Хлопин Н. Г. Общебиологические и экспериментальные основы гистологии, с. 5, Л., 1946; Шавлаев 3. Ф. Развитие сравнительного и экспериментального методов на кафедре гистологии Военно-медицинской академии, Л., 1972.

Учебники и руководства — Елисеев В. Г., Афанасьев Ю. И. и Котовский Е.Ф. Атлас микроскопического и ультрамикроскопического строения клеток, тканей и органов, М., 1970; Елисеев В. Г. и др. Гистология, М., 1972; Заварзин А. А. Курс гистологии и микроскопической анатомии, Л., 1939; он же, Избранные труды, т. 1 — 4, М. — Л., 1950 — 1953, библиогр.; он же, Синтез ДНК и кинетика клеточных популяций в онтогенезе млекопитающих, Л., 1967, библиогр.; Заварзин А. А. и Румянцев А. В. Курс гистологии, М., 1946; 3уфаров К.А. и др. Электронная микроскопия органов и тканей, Ташкент, 1971, библиогр.; Иванов И. Ф. и Ковальский П. А. Гистология с основами эмбриологии домашних животных, М., 1962; Кнорре А. Г. Эмбриональный гистогенез (Морфологические очерки), Л., 1971, библиогр.; Пирс Э. Гистохимия, Теоретическая и прикладная, пер. с англ., М., 1962; Пол Д. Культура клеток и ткани, пер. с англ., М., 1963; Румянцев А. В. Опыт исследования эволюции хрящевой и костной тканей, М., 1958, библиогр.; Северцов А. Н. Морфологические закономерности эволюции, М. — Л., 1939, библиогр.; Tокин И. Б. Проблемы радиационной цитологии, Л., 1974, библиогр.; Хлопин Н. Г. Культура тканей, Л., 1940, библиогр.; он же, Общебиологические и экспериментальные основы гистологии, Л., 1946, библиогр.; Щелкунов С.И. Цитологический и гистологический анализ нормальных и малигнизированных структур, Л., 1971, библиогр.; Электронно-микроскопическая анатомия, пер. с англ., под ред. В. В. Португалова, М., 1967; Amlacher E. Autoradiographie in Histologie und Zytolo-gie, Lpz., 1974; AndrewW. Textbook of comparative histology, N. Y., 1959; Bargmann W. Histologie und mikroskopische Anatomie des Menschen, Stuttgart, 1967; Bloom W. a. Fawcett D.W. A textbook of histology, Philadelphia a. o., 1968; Epithelial-mesenchymal interactions, ed. by R. Fleischmajer a. R. E. Billingham, Baltimore, 1968; Handbuch der mikroskopi-schen Anatomie des Menschen, hrsg. v. W. Mollendorff, Bd 1 — 7, B., 1927 — 1976; Leake L. D. Comparative histology, an introduction to the microscopic structure of animals, L., 1975; Stohr P h. Lehrbuch der Histologie und mikroskopischen Anatomie des Menschen, Jena, 1963.

Периодические издания — Архив анатомии, гистологии и эмбриологии, Л. — М., с 1931 (Русский архив анатомии, гистологии и эмбриологии, 1916 — 1930); Acta anatomica, Basel — N. Y., с 1945; American Journal of Anatomy, Baltimore, с 1901; Anatomical Record, Philadelphia, с 1906; Archiv fur mikroskopische Anatomie, B., с 1865; Archives d’anatomie microscopique et de morphologie experimentale, P., с 1897; Ceskoslovenskd morfologie, Praha, с 1953; Ergebnisse der Anatomie und Entwicklungs-geschichte, Wiesbaden, с 1892; Experimental Cell Research, N. Y., с 1950; International, Review of Cytology, N. Y., с 1952; Journal of Anatomy, L., с 1866; Journal Of Comparative Neurology, Philadelphia, с 1891; Journal of Ultrastructure Research, N. Y., с 1957; Morphologisches Jahrbtich, Lpz., с 1875; Quarterly Journal of Microscopical Science, L., с 1853; Zeitschrift fur Anatomie und Entwicklungsgeschichte, B., с 1891; Zeitschrift fur mikroskopisch-anatomische Forschung, Lpz., с 1924.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *