Что изучает нанотехнология в биологии

Нанотехнологии в биологии и медицине

В рамках совместного проекта ПостНауки и Санкт-Петербургского политехнического университета Петра Великого мы публикуем текст кандидата физико-математических наук Михаила Ходорковского, посвященный исследованиям в области life science в рамках лабораторий молекулярной биологии.

Что такое нанобиотехнологии

Чтобы дать определение такому слову, как нанобиотехнология, следует обратиться к его составляющим частям. Попыток дать определение области наук и технологий с приставкой «нано» сделано много, и ни одно из них не кажется удачным. Можем попробовать дать еще одно с похожей неудачностью. Нанометр (а в просторечии «нано») – это одна миллиардная часть метра. Размер, например, молекулы азота составляет примерно третью часть нанометра, а такого большого и важного для человека белка, как гемоглобин, – немного больше шести нанометров. Для того чтобы создать какую-либо эффективную технологию для любой отрасли промышленности, необходимы знания о составе, структуре и механизмах взаимодействия молекул и их комплексов, определяющих протекание технологических процессов.

Так что без понимания процессов, которые протекают где-то там, в наномире, ничего стоящего уже и не сделаешь. Вот такое может быть объяснение этого странного названия применительно к биотехнологиям, которые охватывают все сферы обеспечения жизни человека. Те ее области, которые относятся к медицине, фармацевтике, сельскому хозяйству и экологии, входят в сферу интересов нашего центра, общей задачей которого является получение фундаментальных знаний о биологических процессах на молекулярном уровне с последующим внедрением результатов исследования в «народное хозяйство» в кооперации с соответствующими организациями.

Для того чтобы почувствовать сложность перехода от фундаментальных исследований к практическому использованию, рассмотрим типичный пример. К нам обратились коллеги из Санкт-Петербургского клинического научно-практического центра специализированных видов медицинской помощи с предложением разработать метод экспресс-диагностики по определению границы между здоровыми и патологическими клетками ткани. Такой метод необходим нашим коллегам-хирургам, чтобы избежать ошибки во время операции и не удалить лишнее или, наоборот, не оставить проблему нерешенной. Решение этой задачи невозможно без применения большой линейки современных молекулярно-биологических методов, которые, вероятно, позволят выявить специфику «плохих» клеток и найти способ ее идентифицировать в онлайн-режиме.

Аналогичных примеров обращений к нам очень много, и каждый раз мы понимаем, что решение любой из этих задач требует глубоких фундаментальных исследований, чтобы создать работающую нанобиотехнологию. Но есть и обратное движение, когда в процессе исследований, достаточно далеких, казалось бы, от востребованных сегодня прикладных целей, получаются результаты, внедрение которых может привести к созданию совершенно новых, революционных технологий.

Становление Научно-исследовательского комплекса «Нанобиотехнологии» началось в 2007–2008 годах, когда опыта в создании подобного мультидисциплинарного центра у Санкт-Петербургского политехнического университета еще не было. Существовала кафедра биофизики, факультет медицинской физики и отдельные группы на инженерных факультетах, где студенты получали неплохие знания, но современного центра, где студенты могли бы использовать свои знания для занятия научно-исследовательской работой в области «науки о жизни», не было. Создание такого центра в Политехническом университете позволяло интегрировать в одном месте как знание и опыт ученых различных специальностей, так и энергию молодежи.

На сегодняшний день в НИК «НаноБио» существует две научно-исследовательские лаборатории – Лаборатория молекулярной микробиологии (ЛММ) и Лаборатория молекулярной биологии нуклеотид-связывающих белков (ЛМБ), два Центра коллективного пользования (ЦКП) и научно-образовательный центр.

Изучение бактерий и CRISPR/Cas-систем

Основной целью работы лаборатории ЛММ под руководством блестящего ведущего ученого Константина Северинова является изучение взаимодействий бактерий друг с другом (посредством химических сигналов, включая антибиотики) и с мобильными генетическими элементами. Результаты работ только за последний период включали «со стороны» мобильных генетических элементов выделение новых бактериофагов и функциональные и структурные исследования продуктов их генов; со «стороны» бактерий проводились пионерские функциональные и структурные исследования механизмов регуляции систем рестрикции-модификации и их действия на уровне отдельных клеток и молекулярного механизма действия CRISPR/Cas-систем различных типов для обеспечения устойчивости бактерий к мобильным генетическим элементам (включая уникальные опыты, проводимые на уровне отдельных клеток).

С точки зрения взаимодействия клеток друг с другом предсказывались кластеры биосинтеза новых антибиотиков, гены которых распространяются за счет горизонтального переноса, определялась структура и механизм действия полученных новых биоактивных веществ. Были получены полусинтетические вещества с увеличенной биоактивностью, и для трех веществ проведены сертифицированные токсикологические доклинические испытания, создана команда, способная в условиях лаборатории разрабатывать регламенты производства установочных серий биоактивных веществ для их испытаний, и организована соответствующая инфраструктура. Найден суррогатный штамм для конверсии сингаза в полезный продукт, к примеру в этанол, показана активность необходимых для конверсии генов в условиях лабораторного культивирования, и проведены эксперименты, показывающие перспективность микробиологической очистки биогаза от компонентов сингаза.

Взаимодействие белков с ДНК, РНК и АТФ

В лаборатории ЛМБ, созданной в кооперации с Петербургским институтом ядерной физики, проводится исследование механизмов и динамики взаимодействия различных белков с ДНК, РНК, АТФ и другими нуклеотидами как с помощью современных экспериментальных биохимических и биофизических методов, так и с помощью теоретических методов молекулярного моделирования и молекулярной динамики. Получение новых знаний в этой области позволяет углубить понимание механизмов канцерогенеза, наследственных заболеваний, старения, репарации ДНК, клеточного деления, трансляции и многих других биологических процессов и тем самым способствует развитию новых подходов в терапии социально значимых заболеваний (рака, наследственных и инфекционных) на основе знания индивидуальных особенностей пациента, а также в увеличении продолжительности жизни человека.

Эти исследования помогут созданию новых антибиотиков и агентов, препятствующих формированию устойчивости микроорганизмов к антибиотикам, и, кроме того, ускорят разработки биотехнологических штаммов бактерий для обезвреживания радиоактивных отходов и улучшения среды обитания человека.

Одним из последних впечатляющих результатов исследований лаборатории является открытие небольших молекул пептидов, ингибирующих резистентность патогенных бактерий к действию антибактериальных препаратов. Получение этого результата было бы невозможно без объединения усилий теоретической группы лаборатории, обеспечивших полноатомное моделирование молекулярного комплекса «белок – ДНК», и высокопрофессиональных экспериментаторов, подтвердивших эффект с помощью современных молекулярно-биологических методов, включая одномолекулярные. В настоящий момент полученный результат находится в стадии патентования.

Фундаментальные исследования в НИК выполняются с помощью комплексного подхода, включающего методы геномного анализа, структурной биологии, масс-спектрометрии, биоинформатического анализа, молекулярной и классической генетики бактерий, биохимических подходов, методов масс- и ЯМР-спектрометрии, КД-спектроскопии, спектрофотометрии и флюорометрии, методов витальной флюоресцентной микроскопии и автоматического анализа изображений, субдифракционной флуоресцентной микроскопии, молекулярного моделирования, а также сверхсовременных технологий single cell и single molecule (одномолекулярных).

В отличие от перечисленных выше, одномолекулярные методы практически неизвестны широкому кругу исследователей в России, и, может быть, следует сказать несколько слов об их возможностях на примере имеющейся в НИК установки «Лазерный пинцет».

Методы позволяют изучать свойства индивидуальных молекул, а также получать данные о динамике их изменения в реальном времени, исключая усреднение по ансамблю из тысяч и миллионов молекул, что неизбежно при исследовании в «пробирке». В связи с этим одномолекулярные методы исследований, активно развивающиеся за рубежом на протяжении последних 10–15 лет, стали необходимым инструментом в изучении структурных и механических аспектов, например, ДНК-белковых взаимодействий и взаимодействий ДНК с веществами небелковой природы, а также при исследовании динамики протекания данных процессов.

Одним из таких наиболее перспективных методов исследования является метод оптического захвата, реализуемый в установке «Лазерный пинцет». Исследования на ней позволяют осуществлять манипуляцию молекулами ДНК в водном растворе, а также измерять силы, приложенные к ним в широком диапазоне (от сотен фемтоньютонов до десятков и сотен пиконьютонов). В данный диапазон попадают силы, развиваемые молекулярными моторами, представляющими собой отдельные биологические молекулы (например, ДНК-полимераза), а также силы, приложение которых приводит к изменению структурных свойств отдельных молекул нуклеиновых кислот (например, разрушение вторичной структуры ДНК).

К сожалению, несмотря на широкое распространение этих методов за рубежом, в России на данный момент только у нас существует действующая установка, поэтому мы вынуждены осваивать и разрабатывать методики исследований, изучая статьи и обмениваясь опытом с зарубежными коллегами.

Коллектив научно-исследовательского комплекса состоит из научных работников разных специальностей. Для освоения и разработки методов с использованием сложной физической аппаратуры необходимы высокопрофессиональные физики и инженеры, без усилий которых исследовательские возможности биологов были бы весьма ограниченны. Практически все работы, проводимые в НИК, являют собой пример взаимодействия групп с различной профессиональной специализацией.

В качестве примера можно привести исследования взаимодействия комплексов эукариотических белков Pontin и Reptin с ДНК и АТФ. Эти белки ответственны за многие процессы жизнедеятельности клетки человеческого организма: известно, что уровень синтеза этих белков напрямую влияет на развитие онкологических заболеваний печени.

Над исследованием этого комплекса белков работают несколько групп с разной специализацией: теоретики, занимающиеся молекулярным моделированием свойств комплекса «белок – ДНК», биохимики, синтезирующие эти белки и их мутантов, биофизики, исследующие их активность классическими биофизическими методами, и физики, исследующие динамику формирования комплексов этих белков на индивидуальных молекулах ДНК с помощью оптического захвата. Сегодня в коллективе НИК более пятидесяти сотрудников, при этом более 70% составляют аспиранты и студенты различных специальностей. Именно за ними мы видим будущие успехи и открытия нашего центра.

Об авторе: Михаил Ходорковский – кандидат физико-математических наук, директор Научно-исследовательского комплекса «Нанобиотехнологии» СПбПУ, заведующий лабораторией молекулярной биологии нуклеотид-связывающих белков.

Читать статьи по темам:

Читать также:

Клетки-киборги

Полностью название обзорной статьи сотрудников Института фундаментальной медицины и биологии КФУ, опубликованной в престижном журнале Chemical Sociеty Reviews звучит так: «Клетки-киборги: функционализация живых клеток при помощи полимеров и наноматериалов».

Киборги-гусеницы

Миниатюрные биороботы двигаются с помощью надетых на гибкий каркас колец мышечной ткани, сокращающихся при стимуляции светом.

Вирус табачной мозаики «научили» производить наночастицы золота из солей

В новой работе ученые создали генно-модифицированный вирус табачной мозаики, способный восстанавливать золото из соли золотохлористоводородной кислоты.

Мышцы луковые

Тайваньские физики создали необычные биоорганические искусственные мускулы, «мотором» которых неожиданно выступают клетки кожицы лука, способные сокращаться и растягиваться под действием электрического тока.

Фотосинтез без растений

Гибридная система искусственного фотосинтеза, которую разработали ученые из Национальной лаборатории Лоуренса Беркли и Калифорнийского университета в Беркли объединяет химию полупроводников с биотехнологией.

Скоростная доставка крупногабаритных грузов в клетки

Новое устройство позволяет доставлять наночастицы, ферменты, антитела, бактерии и другой «крупногабаритный груз» внутрь клеток млекопитающих со скоростью до 100 000 клеток в минуту.

Электронное СМИ зарегистрировано 12.03.2009

Свидетельство о регистрации Эл № ФС 77-35618

Источник

Добро пожаловать в клетку

Словечко «нано» стремительно входит в моду. Особенно у рекламистов и пиарщиков: «нанокефир» и «нанокремы» они уже придумали, скоро создадут «нанососиски» и «наноколготки». Но в реальности многие отрасли знания уже вовсю имеют дело с наночастицами. Среди них и медицина.

Что изучает нанотехнология в биологии

Что изучает нанотехнология в биологии

От мини к нано

История современной медицины – это бег от большого к малому. Многие диагностические аппараты из громыхающих монстров постепенно превратились в элегантные чемоданчики. Довольно объемные мензурки с микстурами и капельницы эволюционировали до крошечных таблеток, подкожных резервуаров с лекарствами или даже пластырей. Устрашающие взгляд полостные операции заменили крошечные проколы, сквозь которые хирурги манипулируют под взглядом видеокамеры.

Но нет предела совершенству. Многие болезни начинаются с изменений в считанных клетках человеческого тела, а болезнетворные бактерии и вирусы тоже вещества микроскопические. Поэтому медицина дерзко мечтает лечить болезнь там, где она возникает, – в клетке.

Нанотехнологиями сегодня активно занимаются примерно в 50 странах. Лидируют США, Япония, Южная Корея, ФРГ. Россия занимает место во второй десятке. Но по числу публикаций по нанотематике мы на почетном 8-м месте

А воплотить эти мечты можно только с помощью нанотехнологий – манипуляций на уровне молекул, атомов и искусственных конструкций тех же размеров. Представить их невозможно, поскольку человеческому глазу сравнить их не с чем. Однако мы знаем, что 1 нанометр – это миллиардная доля метра.

Представим, что мы с вами ростом в 1 нанометр. Тогда земная дистанция всего в один метр превратилась бы для нас в 1 миллиард метров (т.е. 1 млн км), или примерно в кратчайший путь до Луны (356 тыс. км), повторенный три раза. То есть с Луны мы бы с вами уже не вернулись… Вот так же кружит голову и попытка представить себе эти загадочные нанометры.

Кто все это придумал

Мысль о применении микроскопических устройств в медицине впервые была высказана в 1959 году знаменитым американским физиком Ричардом Фейнманом в нашумевшей лекции «Там, внизу, много места». Он описал микроробота, который сможет проникать через сосуд в сердце и выполнять там операцию по исправлению клапана.

В 1967 году биохимик и писатель-фантаст Айзек Азимов первым выдвинул идею «мокрой технологии» – использования для лечения людей живых механизмов, существующих в природе. В частности, собирать их из нуклеиновых кислот и ферментов. Потом Роберт Эттингер предложил использовать модифицированные микробы для ремонта клеток.

Термин «нанотехнология» широко распространился в мире после выхода в 1986 году знаменитой книги «Машины творения» физика Эрика Дрекслера. Он стал называть свои предложения по конструированию отдельных молекул, обладающих заданными свойствами, «молекулярной нанотехнологией». Так что история нанотехнологий уже насчитывает более 20 лет.

Возможности безграничны…

Что же нанотехнологии сулят медицине помимо уже широко разрекламированных, но пока нереальных «нанороботов», которые будут шастать внутри человека и что-нибудь починять?

На самом деле куда больше. Они смогут создавать:

Надеюсь, что тут вам все понятно, кроме разве что «фуллеренов» и «дендримеров». Фуллерен – это пятая (кроме алмаза, графита, карбина и угля) форма углерода, которую сначала предсказали теоретически, а потом открыли в природе. По виду молекула фуллерена (С60) похожа на футбольный мяч, сшитый из пятиугольников и шестиугольников. Медицине же фуллерены интересны тем, что могут пролезать в молекулу ДНК, искривлять и даже «расплетать» ее.

Что изучает нанотехнология в биологии

Что изучает нанотехнология в биологии

Дендримеры – это древовидные полимеры (длинные молекулы, состоящие из повторяющихся одинаковых элементов). Они способны доставлять прицепленные к ним лекарства прямо в клетки, например, раковые.

…а достижения скромны

Но какими бы захватывающими ни были перспективы нанотехнологий, реальные достижения пока невелики.

Американцы создали материал, имитирующий настоящую костную ткань. Применив метод самосборки волокон, имитирующих природный коллаген, они «посадили» на них нанокристаллы гидрооксиапатита. А уже потом на эту «шпатлевку» приклеивались собственные костные клетки человека – таким материалом можно замещать дефекты костей после травм или операций.

Другая разработка, напротив, не дает клеткам приклеиваться к поверхности. Это нужно, к примеру, для создания биореакторов, в которых будут содержаться стволовые клетки. Проблема в том, что, как только стволовая клетка «села» на какую-то поверхность, она немедленно начинает специализироваться – превращаться в клетку конкретной ткани. А чтобы она сохраняла свой потенциал, надо не давать ей «присесть».

Экспериментируя с фуллеренами и дендримерами, сейчас во многих странах ищут эффективные лекарства от СПИДа, гриппа, болезни Паркинсона, рака и т.п. Микрокапсулы с нанопорами могут послужить больным диабетом 1-го типа – они смогут доставить в организм человека клетки поджелудочной железы животного и вовремя выделять инсулин, при этом оставаясь невидимыми для иммунной системы человека.

Что изучает нанотехнология в биологии

Искусственно сконструированная клетка-респироцит сможет заменить недостающие в крови эритроциты – она умеет переносить и кислород, и углекислый газ. При этом взвеси респироцитов понадобится в сотни раз меньше, чем препаратов донорской крови или кровезаменителей.

Не все то золото, что серебро

У российской науки есть и свои рекорды на обширном поле нанотехнологий. Так, мы – явные лидеры в изучении и применении наночастиц металлов в медицине. На солидной научной конференции «Нанотехнологии и наноматериалы для биологии и медицины», которая прошла в конце прошлого года в Новосибирске, чуть не 90% докладов посвящались золоту, серебру, цинку, висмуту и различным комбинациям полимеров, сорбентов и т.п.

Бактерицидные и ранозаживляющие свойства серебра известны медицине давно. Однако наши ученые выяснили, что если серебро и прочие металлы превратить в наночастицы, эти свойства резко возрастают. И доказали это на многочисленных клинических исследованиях. Ожоги, огнестрельные раны, переломы, кожные, гинекологические и прочие воспаления/раны заживают значительно быстрее и эффективнее. Наши ученые создали десятки препаратов, основанных на спасительных свойствах этих металлов. Только не ищите в аптеках – их нет. Почему – это уже вопрос не к ученым, а к тем, кто закупает импортные антибиотики, в тысячи раз более дорогие.

Между прочим, наша сибирячка Нина Богданчикова, которая в России занималась как раз исследованиями серебра, а потом переехала в Мексику и начала работать в Национальном университете, стала инициатором развития этого научного направления во всей Латинской Америке. И теперь оно бурно развивается на континенте. Понятно почему – серебра там хоть завались, а препараты из него получатся не слишком дорогими. Кончится все, как обычно, тем, что начнем их импортировать.

Нам есть чем гордиться

Второе направление, на котором мы могли бы лидировать в мире, – создание биочипов. Чип – это маленькая пластинка, на поверхности которой размещены рецепторы к различным веществам – белкам, токсинам, аминокислотам и т.п. Достаточно капнуть на чип крошечную каплю плазмы, крови или другой биологической жидкости, как «родственные» молекулы прикрепятся к рецепторам. А потом прибор-анализатор считает информацию.

Что изучает нанотехнология в биологии

Биочипы, созданные в Институте молекулярной биологии им. Энгельгардта РАН под руководством академика Андрея Мирзабекова, уже умеют практически мгновенно выявлять возбудителей туберкулеза, ВИЧ, особо опасных инфекций, многие яды, антитела к раку и т.п. Причем наши биочипы оказались намного дешевле и удачнее американских. Однако внедрение этой новейшей технологии в практическую медицину идет гораздо медленнее, чем хотелось бы.

Институт молекулярной биологии имени В.А. Энгельгардта РАН (улица Вавилова, 32). Организован в 1959 как Институт радиационной и физико-химической биологии (современное название с 1965; носит имя организатора и первого директора В.А. Энгельгардта). Исследуются молекулярные основы передачи и реализации наследственной информации.

Что изучает нанотехнология в биологии

Хорошая популярная статья в «Известиях»… Вот такими публикациями и передачами по радио и телевидению должны быть постоянно наполнены отечественные СМИ. Чтобы буквально каждая домохозяйка, студенты, школьники, технари и гуманитарии могли – хотя бы схематически и в самом общем виде – представлять себе, что такое эти нанотехнологии и какие они могут найти практичесие применения в экономике, в промышленности, сельском хозяйстве, в медицине… Тогда это будет находить всё более благожелательный отклик в обществе, а отечественная «отрасль НТ» со временем получит достаточный приток желающих освоить эти специальности. Ну и, конечно, всё это будет способствовать более быстрому появлению всех этих лекарственных препаратов, методов диагностики и лечения в наших аптеках и медицинских учреждениях…

Источник

Нанотехнологии в биологии

Нанотехнология как область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью практических методов исследования и производства. Использование биологических наномолекул. Охране окружающей среды. Институт молекулярной биологии.

РубрикаБиология и естествознание
Видкурсовая работа
Языкрусский
Дата добавления31.10.2014
Размер файла29,4 K

Что изучает нанотехнология в биологии

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нанотехнологии в биологии

2. Что такое нанотехнологии

3. Направления и достижения

4. Положительные и отрицательные стороны нанотехнологий

5. Развитие нанотехнологий в России

6. Новые перспективные технологии

Прогресс в области нанотехнологий вызвал определенный общественный резонанс. нанотехнология биологический молекулярный

Отношение общества к нанотехнологиям изучалось ВЦИОМ и европейской службой «Евробарометр».

Ряд исследователей указывают на то, что негативное отношение к нанотехнологии у неспециалистов может быть связано с религиозностью, а также из-за опасений, связанных с токсичностью наноматериалов. Особо это актуально для широко разрекламированного коллоидного серебра, свойства и безопасность которого находятся под большим вопросом.

Реакция мирового сообщества на развитие нанотехнологий.

C 2005 года функционирует организованная CRN международная рабочая группа, изучающая социальные последствия развития нанотехнологий.

В октябре 2006 года Международным Советом по нанотехнологиям выпущена обзорная статья, в которой, в частности, говорилось о необходимости ограничения распространения информации по нанотехнологическим исследованиям в целях безопасности.

Организация «Гринпис» требует полного запрета исследований в области нанотехнологий.

Тема последствий развития нанотехнологий становится объектом философских исследований. Так, о перспективах развития нанотехнологий говорилось на прошедшей в 2007 году международной футурологической конференции Transvision, организованной WTA.

Реакция российского общества на развитие нанотехнологий.

По сообщениям СМИ, представители Российского трансгуманистического движения акцентировали внимание на развитии нанотехнологического производства на круглом столе «Влияние науки на политическую ситуацию в России. Взгляд в будущее», состоявшегося 21 марта 2007 года в Государственной Думе РФ.

Затем о необходимости развития нанотехнологий заявляет ряд российских общественных организаций.

8 октября 2008 года было создано «Нанотехнологическое общество России», в задачи которого входит «просвещение российского общества в области нанотехнологий и формирование благоприятного общественного мнения в пользу нанотехнологического развития страны».

Мысль о применении микроскопических устройств в медицине впервые была высказана в 1959 году знаменитым американским физиком Ричардом Фейнманом в нашумевшей лекции «Там, внизу, много места». Он описал микроробота, который сможет проникать через сосуд в сердце и выполнять там операцию по исправлению клапана.

Термин «нанотехнология» широко распространился в мире после выхода в 1986 году знаменитой книги «Машины творения» физика Эрика Дрекслера. Он стал называть свои предложения по конструированию отдельных молекул, обладающих заданными свойствами, «молекулярной нанотехнологией». Так что история нанотехнологий уже насчитывает более 20 лет.

2.Что такое нанотехнологии

Нанотехнологиями сегодня активно занимаются примерно в 50 странах. Лидируют США, Япония, Южная Корея, ФРГ. Россия занимает место во второй десятке. Но по числу публикаций по нанотематике мы на почетном 8-м месте

3. Направления и достижения

Что же нанотехнологии сулят медицине помимо уже широко разрекламированных, но пока нереальных «нанороботов», которые будут шастать внутри человека и что-нибудь починять?

На самом деле куда больше. Они смогут создавать:

— микро- и нанокапсулы (например, с лекарствами внутри)

— автоматические наноустройства (помимо все тех же нанороботов).

Но какими бы захватывающими ни были перспективы нанотехнологий, реальные достижения пока невелики.

4. Положительные и отрицательные стороны нанотехнологий

Существует ли риск при применении нанотехнологий?

На слушаниях в комитете по науке Палаты представителей Конгресса США главы экологических движений и промышленных корпораций заявили, что расходы на выяснение экологических и медицинских аспектов применения наноматериалов должны составлять 10-20 % всех затрат на нанотехнологии.

Дело в том, что миниатюрные наночастицы могут легко проникнуть в организм человека и животных через кожу, респираторную систему и желудочно-кишечный тракт. В частности, такое воздействие оказывают углеродные нанотрубки, которые считаются одним из самых перспективных наноматериалов близкого будущего. Однако до сих пор сведения о последствиях неконтролируемых выбросов наночастиц в окружающую среду остаются скудными.

Агентство по охране окружающей среды США опубликовало предварительный вариант Белой книги, посвященной обсуждению опасностей применения нанотехнологий. Ее авторы настоятельно рекомендуют ускорить проведение широкомасштабных исследований, нацеленных на выяснение опасностей и рисков, связанных с наночастичным загрязнением среды обитания. Ведь нанотехнологии являются «новой реальностью», которая пока не поддается законодательному регулированию.

5. Развитие нанотехнологий в России

Нам есть чем гордиться.

Биочипы, созданные в Институте молекулярной биологии им. Энгельгардта РАН под руководством академика Андрея Мирзабекова, уже умеют практически мгновенно выявлять возбудителей туберкулеза, ВИЧ, особо опасных инфекций, многие яды, антитела к раку и т.п. Причем наши биочипы оказались намного дешевле и удачнее американских. Однако внедрение этой новейшей технологии в практическую медицину идет гораздо медленнее, чем хотелось бы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *