Что изучает методика математики

«Методика обучения математике как наука»

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Лекция 1. Методика преподавания математики как научная дисциплина

1. Математика как наука

2. Начальный курс математики как учебный предмет

3. Предмет методики преподавания математики

4. Цели и содержание обучения математике

1. Математика как наука

Слово «математика» (mathema) переводится как «познание, наука» (греч.) Математика – это наука о количественных отношениях и пространственных формах действительного мира.

Количественные отношения выражаются числовыми множествами – множествами натуральных, целых, рациональных, действительных, комплексных чисел. Пространственные формы включают геометрические объекты двухмерного, трехмерного пространства, а также многомерного пространства.

Математика изучает математические модели – логические структуры, схемы, их взаимосвязи. Математические понятия получены в результате абстрагирования от предметов и явлений реального мира.

Математика возникла из практических потребностей людей в древнем мире. Связи математики с практикой, жизнью многообразны. Велика роль математики в развитии современной физики, астрономии, химии – это инструмент, научный язык. Значительное место занимает математика и в экономике, биологии, медицине. Даже в гуманитарных науках, таких как психология, педагогика, социология, статистика математика играет определенное значение.

В истории развития математики выделяют несколько периодов.

Первый период – период зарождения математики, период продолжался до VI-V вв. до н.э.

Второй период – период элементарной математики – продолжался приблизительно до конца XVII века, когда довольно далеко зашло зарождение высшей математики.

Математика бурно развивалась в Древней Греции (имена Евклида, Архимеда, Диофанта известны многим). Математика достигла значительного уровня развития в древнем Китае – в технике произведения вычислений, в создании общих алгебраических методов. Индийские математики ввели десятичную нумерацию, описали действия во множестве целых и действительных чисел. Математика развивалась и в арабских странах: были введены тригонометрические функции, десятичные дроби, вычислено число p с семнадцатью десятичными знаками.

Третий период – период математики переменных величин (с ХVII в. до середины ХIХ в.) В это время создан такой раздел математики как математический анализ, давший возможность рассматривать процессы в их движении, развитии. Он включает в себя изложение понятий функции, производной и интеграла, дифференциальные уравнения. Четвертый период – это период создания математики переменных отношений (ХIХ-ХХ вв.). Он характеризуется развитием математического анализа, изучением процессов в их движении. Широко применяется метод моделирования. Возникли различные разделы математики – аналитическая геометрия, вычислительная математика, математическая логика, теория вероятности. Области приложения математического анализа расширились – в механике (механика непрерывных сред, баллистика) и физике (электродинамика, теория магнетизма, термодинамика).

Математика находится в непрерывном развитии. Возникают все новые математические дисциплины: теория игр, теория информации, математическая статистика, теория вероятностей и др.

2. Начальный курс математики как учебный предмет

В школьный курс математики отобрана та часть математических знаний, которая даст общее представление о науке, поможет овладеть математическими методами и будет способствовать необходимому развитию математического мышления у школьников.

Математика как учебный предмет в школе представляет собой элементы арифметики, алгебры, начал математического анализа, евклидовой геометрии плоскости и пространства, аналитической геометрии, тригонометрии. Начальный курс математики, изучаемый в I-IV классах школы, является органической частью школьного курса математики. Это значит, что курс математики для V-ХI классов – продолжение начального курса, а начальный курс – его исходная база. В соответствии с этим начальный курс математики включает арифметику целых неотрицательных чисел, элементы алгебры и геометрии.

Современные технологии обучения представляют разный набор математических понятий и последовательность их изучения. Однако ядро основных математических понятий, необходимых для продолжения обучения в средней школе, сохраняется во всех оригинальных курсах математики.

Начальный курс математики имеет свои особенности построения.

1. Арифметический материал составляет главное содержание курса. Основой начального курса математики является арифметика натуральных чисел и основных величин. Кроме того, в него входят элементы геометрии и алгебраической пропедевтики, которые по возможности включаются в систему арифметических знаний, способствуя более высокому уровню усвоения понятий о числе, арифметических действиях и математических отношениях, т.е. элементы алгебры и геометрии не составляют особых разделов курса математики, а органически связываются с арифметическим материалом.

2. Арифметический материал вводится концентрически. Сначала изучается нумерация чисел первого десятка, которые не подлежат десятичному расчленению, вводятся цифры для записи этих чисел, изучаются действия сложения и вычитания. Затем рассматривается нумерация чисел в пределах 100, раскрывается понятие разряда, позиционный принцип записи чисел, которые подлежат десятичному расчленению, изучается сложение и вычитание двузначных чисел, вводятся два новых арифметических действия: умножение и деление. Далее изучается нумерация чисел в пределах 1000. Здесь рассматриваются три разряда (единицы, десятки, сотни). Они составляют основу нумерации многозначных чисел, Здесь обобщаются знания об арифметических действиях, вводятся приемы письменного сложения и вычитания. Четвертый концентр посвящен изучению нумерации многозначных чисел. Здесь рассматривается понятие класса, обобщается знание принципа поместного значения цифр, изучаются приемы письменных вычислений. Таким образом, в курсе выделены четыре концентра: десяток, сотня, тысяча, многозначные числа.

3. Одновременно и в тесной связи с рассмотрением нумерации и арифметических действий изучаются другие вопросы: величины, дроби, алгебраический и геометрический материал. Эти разделы раскрываются с первого по последний год обучения, представляя собой линии, пронизывающие основной арифметический материал курса математики.

Выделение именно таких концентров объясняется особенностями десятичной системы счисления и вычислительных приемов: в каждом концентре раскрываются новые вопросы, связанные с системой счисления и арифметическими действиями.

4. Вопросы теории и вопросы практического характера органически связываются между собой. Многие вопросы теории вводятся индуктивно, а на их основе раскрываются вопросы практического характера.

5. Математические понятия, свойства, закономерности раскрываются в курсе в их взаимосвязи. Это не только связь между арифметическим, алгебраическим и геометрическим материалом, но и так называемые внутрипредметные связи – связи между различными понятиями курса, свойствами, закономерностями.

6. Курс математики строится так, что в процессе его изучения каждое понятие получает свое развитие. Например, при изучении арифметических действий сначала раскрывается их конкретный смысл, затем свойства действий, связи и зависимости между компонентами и результатами действий, а также между самими действиями.

7. Сходные или связанные между собой вопросы рассматриваются в сравнении. В этом случае сразу же можно выделить существенные сходные и различные признаки, а это предотвратит ошибки. Так одновременно рассматриваются действия сложения и вычитания, равенства и неравенства, равенства и уравнения.

Таковы основные особенности построения начального курса математики. Рассмотрим теперь его содержание и особенности раскрытия главнейших понятий.

Арифметический материал включает нумерацию целых неотрицательных чисел и арифметические действия над ними, сведения о величинах, их измерении и действия над ними, понятие о дроби.

Изучение этого материала должно привести учащихся к усвоению системы математических понятий, а также к овладению прочными и осознанными умениями и навыками.

Одним из центральных понятий начального курса является понятие натурального числа. Оно трактуется как количественная характеристика класса эквивалентных множеств. Раскрывается это понятие на конкретной основе в результате практического оперирования множествами и величинами (длина отрезка, масса, площадь и др.). Формирование понятия натурального числа не только в процессе счета предметов, но и в процессе измерения величин обогащает содержание этого понятия. При изучении нумерации натуральное число получает дальнейшее развитие: оно выступает как элемент упорядоченного множества или как член натуральной последовательности. В связи с рассмотрением свойств натуральной последовательности раскрывается количественное и порядковое значение натурального числа. Над числами можно производить действия, в результате получится тоже число. Таким образом, в начальном курсе математики раскрываются различные способы образования натурального числа (счет, измерение, выполнение арифметических действий). Число нуль трактуется как количественная характеристика пустых множеств.

В начальных классах дается наглядное представление о дроби. Вначале дается представление о доле как одной из равных частей целого (круга, куска шпагата и т.п.). Рассматривается решение задач на нахождение доли от числа и числа по его доле. В следующем классе вводится дробь как совокупность долей, запись дроби, преобразование и сравнение дробей на наглядной основе.

Понятие о системе счисления раскрывается при концентрическом построении курса постепенно, в процессе изучения нумерации натуральных числе и арифметических действий над ними. Постепенно вводятся новые разряды и классы чисел.

Арифметические действия занимают центральное место в начальном курсе математики. Этот раздел включает раскрытие конкретного смысла арифметических действий, свойств действий, связей и зависимостей между компонентами и результатами действий, а также формирование вычислительных умений и навыков.

В связи с изучением арифметического материала вводятся элементы алгебры: на конкретной основе раскрываются понятия равенства, неравенства, уравнения, переменной.

Геометрический материал служит не только для ознакомления с простейшими геометрическими фигурами, но и развития пространственных представлений младших школьников, и для пропедевтики изучения геометрии в средней школе. Учащиеся знакомятся с геометрическими фигурами (прямые, кривые, ломаные линии, точка, отрезок прямой, многоугольники и их элементы, окружность, круг. Изучаются геометрические величины – длина отрезка и площадь фигуры.

В тесной связи с изучением арифметического, алгебраического и геометрического материала раскрывается понятие величины и идея измерения величин. Ознакомление с такими величинами, как длина, масса, емкость, время, площадь, с единицами их измерения и с измерением величин выполняется практически и тесно связывается с формированием понятия числа, десятичной системы счисления и арифметических действий, а также с формированием понятия геометрической фигуры.

Задачи являются теми упражнениями, с помощью которых прежде всего раскрываются многие вопросы начального курса математики. Например, с помощью решения задач раскрывается конкретный смысл арифметических действий, свойства действий, связи между компонентами и результатами арифметических действий и др. Формирование каждого нового понятия всегда связано с решением тех или иных задач, требующих применения или помогающих уяснить его значение. Таким образом, задачи являются средством связи обучения математике с жизнью, той сферой приложения математических знаний, которая позволяет обеспечить достаточно разнообразные жизненные ситуации для раскрытия разных сторон понятий. Кроме того, в процессе решения задач учащиеся овладевают практическими умениями и навыками, необходимыми им в жизни, знакомятся с полезными фактами, учатся устанавливать связи и зависимости между величинами, часто встречающимися в жизни.

3. Предмет методики преподавания математики

Методика преподавания математики – наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп.

Еще одно определение: Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.

Методологическими основами методики обучения математике в начальных классах являются положения, закономерности диалектического материализма, психологии, педагогики. Методика преподавания математики в начальных классах связана также с физиологией младших школьников, с методикой математики в детском саду и в средней школе и другими методиками. Теоретическими основами методики обучения математике в начальных классах являются общедидактические положения.

Целью данной дисциплины является совершенствование системы усвоения студентами содержания, методов, приемов изучения основных разделов начального курса математики, традиционных форм, методов, средств обучения младших школьников математике, овладение будущими учителями вариативными подходами организации творческой деятельности детей; формирование у студентов методических знаний, умений, мотивации, рефлексии и опыта продуктивной деятельности для реализации на практике идей творческого развития учащихся начальных классов в процессе обучения математике.

Основные компоненты методической системы – цели, содержание, методы, формы и средства обучения математике.

Задачами дисциплины являются:

— совершенствование профессиональной подготовки будущих учителей по методике преподавания математики в начальной школе за счет внедрения новых технологий, развития у них мотивации, рефлексии, установления межпредметных связей данного курса с психолого-педагогическими и специальными дисциплинами;

— подготовка студентов к реализации идей развивающего, проблемного, диалогического обучения, организации познавательно-поисковой математической деятельности младших школьников;

— обучение будущих учителей методам организации благоприятной психосоциальной среды в ученическом коллективе;

— вовлечение студентов в научно-исследовательскую работу с целью формирования у них поисково-познавательных и творческих способностей.

-определение конкретных целей изучения математики по классам, темам, урокам;

— отбор содержания учебного предмета в соответствии с целями и познавательными возможностями учащихся;

— разработка наиболее рациональных методов и организационных форм обучения, направленных на достижение поставленных целей;

— выбор необходимых средств обучения и разработка методики их применения в практике работы учителя математики.

Структурно методика преподавания математики может быть представлена двумя разделами:

Частная (традиционная технология, современные технологии обучения).

Предусмотренное программой содержание школьного математического образования, несмотря на происходящие в нем изменения, в течение достаточно длительного времени сохраняет свое основное ядро.

Выделенное ядро школьного курса математики составляет основу его базисной программы, которая является исходным документом для разработки тематических программ. В программе кроме распределения учебного материала по классам, излагаются требования к знаниям, умениям и навыкам учащихся, раскрываются межпредметные связи

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Методика обучения математике в современной школе

Что изучает методика математики Юлия Васильевна
Методика обучения математике в современной школе

Пономарева Юлия Васильевна

Учитель математики

МБОУ Каменно-Балковская СОШ

Методика обучения математике в современной школе

Существуют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.

Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.

Методика преподавания математики занимается, прежде всего, изучением, разработкой, усовершенствованием различных методов и форм преподавания математики в школах, а также многообразными организационными вопросами, возникающими при применении этих методов и форм на практике. Эта дисциплина выясняет, как обеспечить прочные систематизированные знания и навыки в объеме, установленном программой, тратя на это минимум времени и сил, и как обеспечить достижение тех воспитательных целей, какие ставит себе изучение математики. Методика преподавания математики изучает и систематизирует опыт лучших учителей и даёт возможность начинающему учителю избежать многих ошибок, легко допускаемых на первых порах и приводящих к большим потерям для учащихся. Исходя из конкретных задач, стоящих перед учителем математики, имеющим класс с определенным составом учащихся, определенную программу, определенные учебники, твердое расписание, методика устанавливает способы наилучшего использования всех этих конкретных условий для достижения поставленной цели. Кроме того, она накопляет также опыт учителей, говорящий о желательности тех или иных изменений в учебных планах, программах, учебниках.

Методика математики – наука, выводы которой немедленно и самым широким образом применяются на практике и являются базой искусства преподавания.

Методика преподавания математики прежде всего должна ответить на несколько основных, тесно связанных между собой вопросов.

Первый из них – зачем обучать математике? Очевидно, ответ на этот вопрос можно получить, исходя из общих задач воспитания, которые, в свою очередь, определяются задачами, стоящими перед обществом на соответствующем этапе его развития.

Второй вопрос – кого обучать математике? С одной стороны,это вопрос о возрасте: когда целесообразно приступать к обучению детей математике и когда следует заканчивать изучение обязательной для всех программы? С другой стороны это приобретающий все большую актуальность вопрос о «послешкольном» продолжении математического образования.

Третий вопрос – каково содержание изучаемого курса математики? Ответ на этот вопрос теснейшим образом связан с ответом на вопрос о целях обучения математике. Следует подчеркнуть, что, пожалуй, именно в математике вопрос о том, что именно и в каком объеме следует отобрать из сегодняшней науки для школьной программы, является наиболее сложным, важным и спорным.

Наконец, четвертый вопрос – как обучать математике? Очевидно, что ответ на этот вопрос и составляет важнейшую часть курса методики преподавания математики, причем материал этот является наиболее подвижным, наиболее конкретным, наиболее близким учителю-практику, требует к себе поистине творческого отношения.

Дидактика математики относится к группе педагогических наук и находится в тесной связи с педагогикой. Влияние на нее оказывают и математические науки. Также методика математики основывается на понятиях и законах психологии. Физиология высшей нервной деятельности, в частности учение И. П. Павлова об условных рефлексах, находит применение в обучении математике. Плодотворное влияние на дидактику математики оказывает связь логикой, историей математики, с ее историей.

Методика преподавания математики рассматривает такие вопросы, как цели обучения, математические понятия и предложения, теоремы и их доказательство, задачи и их решение, методы и формы обучения, урок по математике и др.

Методика преподавания математики в школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я. А. Коменским. Методика обучения математике впервые выделилась как самостоятельная дисциплина в книге швейцарского учёного И. Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике математики в России стала книга Ф. И. Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифметики для народной школы считается П. С. Гурьев, который критерием правильности решения методических проблем признавал опыт и практику.

Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними.Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения математике.

Предмет методики обучения математике отличается исключительной сложностью. Предметом методики обучения математике является обучение математике, состоящее из целей и содержания математического образования, методов, средств, форм обучения математике. На функционирование системы обучения математикеоказывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие математики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследований в психологии, дидактике, логике и т. д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на систему обучения математике. Многие компоненты внешней среды воздействуют на нее через цели обучения математике.

Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства

Долгое время история математического образования не являлась специальным объектом научных исследований, и ее отдельные грани освещались либо в рамках истории развития различных учебных заведений, либо в контексте истории математики, либо на фоне материалов, посвященных персоналиям. Поэтому отрадно отметить, что на рубеже XX-XXI веков выходят фундаментальные работы по истории обучения математике в России Ю. М. Колягина и Т. С. Поляковой[3].

Несмотря на уникальность этих сочинений, все же следует отметить, что, вследствие поставленных авторами задач, они описывают историю отечественного математического образования в целом.Между тем не в меньшей степени представляется интересной история преподавания конкретных дисциплин: арифметики, алгебры, геометрии и т. д. Тем более важно исследовать эволюцию обучения высшей математике в школе, поскольку наличие этого раздела в школьном курсе на протяжении столетий вызывает у педагогов наибольшее количество споров.Даже сегодня представляется весьма затруднительным получить однозначные и исчерпывающие ответы на традиционные вопросы: «Нужна ли высшая математика в школе, «Какие вопросы высшей математики должны найти отражение в школьной программе?», «Каким образом осуществить введение элементов высшей математики в школу?» и, наконец, «Как при этом эффективно организовать процесс обучения?». Но, несмотря на различие мнений, элементы высшей математики уже стали неотъемлемой частью школьного курса математики.

Детальный анализ историко-педагогической и методико-математической литературы позволяет утверждать, что приводимые в ней сведения не дают даже общей картины постановки преподавания элементов высшей математики в XVIII-XX вв. как в высшей, так и в средней школе; все эти сведения весьма разрозненны, не систематизированы, имеют расхождения в датах, описании фактов, оценке событий. Требуют уточнения, к примеру, многочисленные факты о жизни и научной деятельности таких педагогов-математиков, как, Семен Кирилович Котельников Михаил Георгиевич. Г. Попруженко и многих др. ; имеют место разночтения в сроках и причинах проникновения элементов высшей математики в школьный курс; встречается переоценка роли педагогов «в борьбе» за внедрение идей высшей математики в среднюю школу и т. п.

Сказанное во многом можно отнести и к другим разделам школьного курса математики. Таким образом, есть все основания констатировать,что в настоящее время обострились противоречия между:

— сохранением традиций отечественной системы математического образования и необходимостью ее обновления, вызванного требованиями времени (в т. ч. в контексте модернизации средней школы);

— фактическим проникновением элементов высшей математики в школьный курс и отсутствием единой теории, обосновывающей необходимость изучения высшей математики в средней школе;

— историко-культурной и педагогической потребностью в осмыслении исторического опыта обучения высшей математике в средней школе и недостатком знаний об этом важном разделе истории математического образования (в т. ч. недостаточной его освещенностью в научных исследованиях).

История развития математики – это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.

Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много… Эти нечисловые понятия всегда ограждали сферу математики. Математика придавала законченный вид всем наукам, где она применялась. В Европе сложилось разделение на гуманитарные и естественные науки по степени влияния математики на эти части.

Перед преподаванием математики в школе кроме общих целей обучения стоят ещё свои специфические цели, определяемые особенностями математической науки. Одна из них – это формирование и развитие математического мышления. Это способствует выявлению и более эффективному развитию математических способностей школьников, подготавливает их к творческой деятельности вообще и в математике с ее многочисленными приложениями в частности.

Вообще интеллектуальное развитие детей можно ускорить по трём направлениям: понятийный строй мышления, речевой интеллект и внутренний план действий.

Прочное усвоение знаний невозможно без целенаправленного развития мышления, которое является одной из основных задач современного школьного обучения.

Хочется обратить внимание на две главные проблемы дидактики математики: модернизация содержания школьного математического образования и совершенствование структуры курса.

Быстрый рост объема научной информации, ограниченность срока школьного обучения и невозможность сокращения объема изучаемых в школе основ науки с целью включения новой информации усложняют проведение реформ по модернизации школьного образования, а поэтому готовить их придется в течение более длительного времени, тщательно и строго на научной основе.

Имеют место успешные эксперименты по модернизации курса начальных классов и изучению в нем начал алгебры, что позволило дать значительную пропедевтику алгебры и геометрии в I-V классах, позволяющую изучить систематические курсы этих предметов в более быстром темпе и перенести ряд тем из старших классов в средние; включить в программу старших классов элементы высшей математики. Таким образом, улучшение системы курса возможно и в период между реформами, т. е. независимо от модернизации образования.

Ряд исследователей, таких как Юрий Михайлович. Колягин, Татьяна Сергеевна Полякова, Ольга Алексеевна Саввина, Ольга Викторовна Тарасова, Ростислав Семенович Черкасов, в своих работах предлагают разные подходы к периодизации развития математического образования. В научных работах И. К. Андронова и Р. С. Черкасова предприняты попытки определить не только периодизацию математического образования, но и периодизацию методики преподавания математики как науки.

Современные подходы к организации системы школьного образования, в том числе и математического образования, определяются, прежде всего, отказом от единообразной, унитарной средней школы.

Направляющими векторами этого подхода являются гуманизация и гуманитаризация школьного образования.

Гуманитаризация школьного математического образования реализуется как гуманитарная ориентация обучения математике. Гуманитарная ориентация является одним из основополагающих принципов новой концепции и выражается, условно говоря, тезисом «не ученик для математики, а математика для ученика», означающим постановку акцента на личность, на человека.

Этим определяется переход от принципа «вся математика для всех» к внимательному учету индивидуальных параметров личности — для чего конкретному ученику нужна и будет нужна в дальнейшем математика, в каких пределах и на каком уровне он хочет и/или может ее освоить, к конструированию курса «математики для всех», или, более точно, «математики для каждого».

Одной из основных целей учебного предмета «Математика» как компоненты общего среднего образования, относящейся к каждому учащемуся, является развитие мышления, прежде всего, формирование абстрактного мышления, способности к абстрагированию и умению «работать» с абстрактными, «неосязаемыми» объектами. В процессе изучения математики в наиболее чистом виде может быть сформировано логическое и алгоритмическое мышление, многие качества мышления, такие, как сила и гибкость, конструктивность и критичность и т. д.

Эти качества мышления сами по себе не связаны с каким-либо математическим содержанием и вообще с математикой, но обучение математике вносит в их формирование важную и специфическую компоненту, которая в настоящее время не может быть эффективно реализована даже всей совокупностью отдельных школьных предметов.

В то же время конкретные математические знания, лежащие за пределами, условно говоря, арифметики натуральных чисел и первичных основ геометрии, не являются «предметом первой необходимости» для подавляющего большинства людей и не могут, поэтому составлять целевую основу обучения математике как предмету общего образования.

Именно поэтому в качестве основополагающего принципа образовательной технологии в аспекте «математики для каждого» на первый план выдвигается принцип приоритета развивающей функции в обучении математике. Иными словами, обучение математике ориентировано не столько на собственно математическое образование, в узком смысле слова, сколько на образование с помощью математики.

В соответствии с этим принципом главной задачей обучения математике становится не изучение основ математической науки как таковой, а общеинтеллектуальное развитие — формирование у учащихся в процессе изучения математики качеств мышления, необходимых для полноценного функционирования человека в современном обществе, для динамичной адаптации человека к этому обществу.

Формирование условий для индивидуальной деятельности человека, основывающейся на приобретенных конкретных математических знаниях, для познания и осознания им окружающего мира средствами математики остается, естественно, столь же существенной компонентой школьного математического образования.

С точки зрения приоритета развивающей функции конкретные математические знания в «математике для каждого» рассматриваются не столько как цель обучения, сколько как база, «полигон» для организации полноценной в интеллектуальном отношении деятельности учащихся. Для формирования личности учащегося, для достижения высокого уровня его развития именно эта деятельность, если говорить о массовой школе, как правило, оказывается более значимой, чем те конкретные математические знания, которые послужили ее базой.

Гуманитарная ориентация обучения математике как предмету общего образования и вытекающая из нее идея приоритета в «математике для каждого» развивающей функции обучения по отношению к его чисто образовательной функции требует переориентации методической системы обучения математике с увеличения объема информации, предназначенной для «стопроцентного» усвоения учащимися, на формирование умений анализировать, продуцировать и использовать информацию.

Среди общих целей математического образования центральное место занимает развитие абстрактного мышления, включающего в себя не только умение воспринимать специфические, свойственные математике абстрактные объекты и конструкции, но и умение оперировать с такими объектами и конструкциями по предписанным правилам. Необходимой компонентой абстрактного мышления является логическое мышление — как дедуктивное, в том числе и аксиоматическое, так и продуктивное — эвристическое и алгоритмическое мышление.

В качестве общих целей математического образования рассматриваются также умение видеть математические закономерности в повседневной практике и использовать их на основе математического моделирования, освоение математической терминологии как слов родного языка и математической символики как фрагмента общемирового искусственного языка, играющего существенную роль в процессе коммуникации и необходимого в настоящее время каждому образованному человеку.

Гуманитарная ориентация обучения математике как общеобразовательному предмету определяет конкретизацию общих целей в построении методической системы обучения математике, отражающей приоритет развивающей функции обучения. С учетом очевидной и безусловной необходимости приобретения всеми учащимися определенного объема конкретных математических знаний и умений, цели обучения математике образовательной технологии “Школа 2100”могут быть сформулированы следующим образом:

— овладение комплексом математических знаний, умений и навыков,необходимых: а) для повседневной жизни на высоком качественном уровне и профессиональной деятельности, содержание которой не требует использования математических знаний, выходящих за пределы потребностей повседневной жизни; б) для изучения на современном уровне школьных предметов естественнонаучного и гуманитарного циклов; в) для продолжения изучения математики в любой из форм непрерывного образования (в том числе, на соответствующем этапе обучения, при переходе к обучению в любом профиле на старшей ступени школы);

— формирование и развитие качеств мышления, необходимых образованному человеку для полноценного функционирования в современном обществе, в частности эвристического (творческого) и алгоритмического (исполнительского) мышления в их единстве и внутренне противоречивой взаимосвязи;

— формирование и развитие у учащихся абстрактного мышления и, прежде всего, логического мышления, его дедуктивной составляющей как специфической характеристики математики;

— повышение уровня владения учащимися родным языком с точки зрения правильности и точности выражения мыслей в активной и пассивной речи;

— формирование умений деятельности и развитие у учащихся морально-этических качеств личности, адекватных полноценной математической деятельности;

— реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира;

— формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и его закономерностей, в частности как базы компьютерной грамотности и культуры;

— ознакомление с ролью математики в развитии человеческой цивилизации и культуры, в научно-техническом прогрессе общества, в современной науке и производстве;

— ознакомление с природой научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности.

Консультация для воспитателей «Методика обучения дошкольников театрализованной деятельности» Годованая О. Ю., музыкальный руководитель МБДОУ д/с «Академия детства», г. Нижний Тагил Свердловской области. Данная методическая разработка.

Краткая методика обучения детей дошкольного возраста пересказу Методика обучения детей дошкольного возраста пересказуВсе знают о важности развития связной речи в дошкольном периоде. Рассмотрим такую.

Методика обучения дошкольников ползанию и лазанью Содержание Введение 1. Лазанье. Ползание. Программные требования 2. Методика обучения лазанью и ползанию в разных возрастных группах Заключение.

Методика обучения ползанию в старшей группе 1. Возрастная группа: (5-6 лет) 2. Виды упражнений: ползанье на четвереньках по гимнастической скамейке 3. Графическое изображение: 4.

Методика обучения связным высказываниям типа рассуждений Муниципальное бюджетное дошкольное образовательное учреждение «Детский сад «Радуга» г. Козловка Чувашской Республики Консультация.

Методика обучения технике квиллинга на мастер-классе ]Декоративно-прикладная деятельность школьников в дополнительном образовании. К возможностям декоративно-прикладного искусства художники-педагоги.

Методика проведения и особенности приемов обучения на занятиях в раннем возрасте Методика проведения и особенности приемов обучения на занятиях в раннем возрасте Разработал: Старший воспитатель МБДОУ № 19 «Золотая рыбка».

Педагогическая консультация «Методика обучения упражнениям со скакалкой» Педагогическая консультация. «Методика обучения упражнениям со скакалкой». Комарова Л. А. г. Ялуторовск, 2019 Прыжки со скакалкой укрепляют.

Теория и методика физической культуры и спорта. Методика обучения двигательным действиям Теория и методика физической культуры и спорта Методика обучения двигательным действиям. 1. Двигательные умения и навыки как предмет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *